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Abstract

Sexually reproducing parasites, such as malaria parasites, experience a trade-off between

the allocation of resources to asexual replication and the production of sexual forms. Alloca-

tion by malaria parasites to sexual forms (the conversion rate) is variable but the evolution-

ary drivers of this plasticity are poorly understood. We use evolutionary theory for life

histories to combine a mathematical model and experiments to reveal that parasites adjust

conversion rate according to the dynamics of asexual densities in the blood of the host. Our

model predicts the direction of change in conversion rates that returns the greatest fitness

after perturbation of asexual densities by different doses of antimalarial drugs. The loss of a

high proportion of asexuals is predicted to elicit increased conversion (terminal investment),

while smaller losses are managed by reducing conversion (reproductive restraint) to facili-

tate within-host survival and future transmission. This non-linear pattern of allocation is con-

sistent with adaptive reproductive strategies observed in multicellular organisms. We then

empirically estimate conversion rates of the rodent malaria parasite Plasmodium chabaudi

in response to the killing of asexual stages by different doses of antimalarial drugs and fore-

cast the short-term fitness consequences of these responses. Our data reveal the predicted

non-linear pattern, and this is further supported by analyses of previous experiments that

perturb asexual stage densities using drugs or within-host competition, across multiple para-

site genotypes. Whilst conversion rates, across all datasets, are most strongly influenced by

changes in asexual density, parasites also modulate conversion according to the availability

of red blood cell resources. In summary, increasing conversion maximises short-term trans-

mission and reducing conversion facilitates in-host survival and thus, future transmission.

Understanding patterns of parasite allocation to reproduction matters because within-host

replication is responsible for disease symptoms and between-host transmission determines

disease spread.
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Author summary

Malaria parasites in the host replicate asexually and, during each replication cycle, some

asexuals transform into sexual stages that enable between-host transmission. It is not

understood why the rate of conversion to sexual stages varies during infections despite its

importance for the severity and spread of the disease. We combined a mathematical

model and experiments to show that parasites adjust conversion rates depending on

changes in their in-host population size. When population sizes plummet, between-

host transmission is prioritised. However, smaller losses in number elicit reproductive

restraint, which facilitates in-host survival and future transmission. We show that

increased and decreased conversion in response to a range of in-host environments are

actually part of one continuum: a sophisticated reproductive strategy similar to that of

multicellular organisms.

Introduction

Life history theory, developed for multicellular organisms, predicts how organisms should

divide their resources between reproduction and growth or maintenance during their lifetime

[1, 2]. Unicellular malaria parasites (Plasmodium) also face this life history trade-off, since they

use different stages for within-host survival and between-host transmission [3]. Malaria para-

sites replicate asexually in the blood of a vertebrate host and, during every replication cycle, a

proportion of asexual stages commit to producing sexual stages (“gametocytes”) [4, 5]. Asexual

stages are required for within-host survival and the parasites’ capacity for rapid asexual replica-

tion is responsible for the symptoms and severity of malaria. A round of sexual reproduction

must occur in the mosquito vector making gametocytes essential for between-host transmis-

sion. Across Plasmodium species, allocation to gametocytes versus asexual stages (the “conver-

sion rate”) is generally low but highly variable during—and between—infections [6–8].

Explaining low but variable conversion rates is a long-standing challenge in parasitology [9–

12] and understanding plasticity in reproductive allocation is a major aim of evolutionary biol-

ogy [1, 2].

Variation in conversion rates represents a form of “phenotypic plasticity” in reproductive

allocation [3], which is commonly observed in multicellular taxa [1, 2]. In its broadest sense,

phenotypic plasticity is defined as a single genotype producing different phenotypes across

environments [13]. We apply the term here to refer to changes in phenotype (conversion rate)

in response to directional shifts in the environment. This contrasts with “bet hedging”, which

refers to the production of multiple phenotypes independent of the direction of environmental

change. Phenotypic plasticity can be “adaptive”, allowing organisms to maximise fitness in a

particular environment by matching trait values to the conditions they encounter [13].

Life history theory provides intuition to explain plasticity in reproductive allocation: organ-

isms in good physiological condition (“state”) and/or with plentiful resources can afford to

invest in reproduction, but as their physiological condition deteriorates (e.g. due to ageing or a

deteriorating environment) they should divert resources away from reproduction and into

maintenance and survival—a strategy called “reproductive restraint” [14–18]. This maximises

fitness by increasing the likelihood of survival until the environment or state improves, conse-

quently increasing the likelihood of future reproduction. However, if survival is extremely

unlikely and prospects for future reproduction are bleak, organisms should prioritise alloca-

tion of resources to reproduction—a strategy called “terminal investment” [1, 2, 17–20]. Esti-

mating how and why a trait of a given genotype changes across a range of possible states or

Strategies for within-host survival and between-host transmission

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007371 November 14, 2018 2 / 21

NM). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.ppat.1007371


environmental conditions (i.e. the “reaction norm”) is difficult. Since environmental condi-

tions can vary in many ways simultaneously, it is rarely obvious which specific conditions

trigger changes in allocation to reproduction. Further, comparing fitness to what would be

expected if the trait were not plastic or adjusted to other values is needed to determine whether

plasticity is adaptive. Finally, identifying terminal investment can be particularly difficult since

being in poor state means that an organism’s absolute level of reproductive output may be low,

despite investing all they can.

The concepts of state, reproductive restraint, and terminal investment are readily applied to

malaria. When viewing asexual stages of a given genotype within a host as an individual multi-

cellular organism that can grow and reproduce [21, 22], conversion rate is analogous to repro-

ductive investment. Reasonable proxies for state (a notoriously vague term) include the

density, or changes in density, of the cohorts of asexual stages that make conversion rate ‘deci-

sions’ [3]. As a product of infections taking their natural course, or due to interventions such

as drug treatment, parasites experience rapid and extensive variation in the within-host envi-

ronment and so too, their state. A wealth of data, collected from human parasites in vitro and

animal models, suggest that differences in the density and age structure of red blood cell

resources, the presence of co-infecting parasite strains, and antimalarial drug treatments can

all alter conversion rates [23–43]. We and others have proposed that this apparent plasticity in

the conversion rate is a life history strategy adapted to coping with the changeable ecology

malaria parasites experience during infections (reviewed in [3, 8]).

Why might malaria parasites benefit from altering conversion in response to state? For

example, early in infections, while parasite densities are growing exponentially, parasites

exhibit good state, whereas attack by antimalarial drugs or immune responses causes a decline

in state. When parasites experience a low to moderate loss of state, reproductive restraint

could facilitate within-host survival and future transmission by diverting investment to asexual

replication, albeit at a cost to short-term transmission. In contrast, when in-host survival is

unlikely due to severe loss of state, switching to terminal investment might maximise short-

term transmission. Thus, intuitively, conversion rate should follow a non-linear reaction norm

with respect to declining parasite state (Fig 1). Whereas many studies report responses in the

direction that our intuition predicts [23–52] (Table 1), some predict no change in conversion

rate despite a change in state [23, 45, 53], while others reveal different responses to the same

perturbation (e.g., drug treatment [24, 37]). Unfortunately, existing experimental data pre-

clude building a reaction norm, due to several issues. First, previous approaches used to esti-

mate conversion rates are likely to be biased [54]: when even a fraction of gametocytes persist

longer than the sampling interval, conversion rates can be wildly overestimated. This bias is

exacerbated when asexual densities are declining (as would be the case for any perturbation

resulting in a loss of state). Second, many studies compare only two groups, i.e. a single pertur-

bation and a control, providing limited resolution on the full breadth of the reaction norm.

Here, we overcome the above issues by combining a new method for inferring conversion

rates [54] with experiments using different doses of an antimalarial drug as a convenient way

to perturb parasite state in a quantifiable manner. We first use a mathematical model to test

the intuition that adaptive conversion rates follow a non-linear reaction norm in response to

drug-induced perturbations of parasite state. We then use the rodent malaria Plasmodium cha-
baudi to test these expectations, estimating conversion rates across the entire reaction norm

(from no change in state due to drugs to near clearance of infections), and more accurately

than previously possible [54]. We then assess how the observed changes in conversion rates

impact upon prospects for within-host survival and short-term transmission. Further analyses

show that whilst state is a major determinant of conversion rate, parasites also fine-tune con-

version decisions in response to the dynamics of red blood cell resources. We then revisit data

Strategies for within-host survival and between-host transmission
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from previous experiments using different parasite genotypes and perturbations of state to test

the generality of our results. Elucidating the shape of the reaction norm for conversion rates in

response to changes in state is important because many disease control measures, like drug

treatment, seek to alter parasite state. If, in response, parasites reduce conversion, infections

may become harder to clear, while an increase in conversion can enhance short-term trans-

mission. Understanding when each of these responses is expected is therefore important for

mitigating the clinical and epidemiological consequences of adaptive plasticity in conversion

rates.

Results and discussion

Plastic conversion rates maximise fitness in silico
Here we examine whether drug treatment can generate a non-linear reaction norm that

includes reproductive restraint and terminal investment. We use a mathematical model of

within-host infection dynamics that tracks the changes in densities of infected and uninfected

red blood cells, as well as gametocytes, to predict the patterns of reproductive allocation (con-

version rate) that maximise “fitness” in response to variation in “state” (see ‘Mathematical

model’ in Materials and methods). The mathematical model perturbs state by simulating the

killing of asexually replicating stages by different doses of pyrimethamine treatment

Fig 1. Predicted reaction norm for plasticity in gametocyte conversion rate in response to perturbations of state.

State refers to a combination of physiological condition and environmental factors. Evolutionary theory for life

histories as applied to malaria parasites suggests that genotypes in good state can afford to invest in gametocytes (solid

line), but should adopt reproductive restraint if state deteriorates (dashed line), and switch to making a terminal

investment (dotted line) if state deteriorates so much that in-host survival becomes unlikely. Note that the x axis is not

synonymous with time post infection and that parasite state may improve and deteriorate multiple times during an

infection. Most studies in Table 1 can be qualitatively interpreted according to this pattern.

https://doi.org/10.1371/journal.ppat.1007371.g001
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(administered on day 11 post infection) of single-genotype infections of the rodent malaria P.

chabaudi (S1 Fig). We assume a pattern of conversion that is predicted to be optimal in

untreated single genotype infections [55, 56], then use optimization algorithms to predict the

conversion rates that maximise parasite fitness following drug treatment. In essence, this

model predicts shifts in conversion rates due to different losses of state that can be qualitatively

compared to experimental data. This differs from our previous modelling work, which allows

parasites to ‘prepare’ in advance of drug treatment [56].

We find that, compared to untreated infections, parasites should reduce their conversion

when confronted with low drug doses but increase conversion at higher doses (Fig 2A), as

expected. Adjusting conversion rates partially compensates for the fitness lost due to drug

treatment (Fig 2B), and dose-specific strategies maximise fitness (Fig 2C) (for calculations of

fitness consequences see ‘Mathematical model’ in Materials and methods). Our model predicts

a hard switch from reducing to increasing conversion once drug doses are high enough to kill

>99.9% of parasites (~9 mg/kg). In reality, in addition to the challenges of accurately estimat-

ing state, parasites in vivo will face other factors simultaneously affecting state (e.g. host immu-

nity) that are not included in our model. Notwithstanding these caveats, the model predicts a

non-linear reaction norm because parasites that plastically adjust conversion in response to

drugs are fitter than parasites which do not respond.

Table 1. Studies on plasticity in P. chabaudi and P. falciparum conversion rates following a variety of perturba-

tions that affect state.

NC. No change: deteriorating state associated with no change in conversion rates

P. chabaudi in vivo [53] competition

P. falciparum in vivo [45] drugs

P. falciparum in vitro [23] drugs

IS. Improved state associated with increased conversion rates

P. chabaudi in vivo [26–28,31] reticulocytes

P. falciparum in vitro [23,29–30] reticulocytes

P. falciparum in vivo [44,46,51–52] anaemia/reticulocytes

RR. Reproductive restraint: deteriorating state associated with decreased conversion rates

P. chabaudi in vivo [25, 31–33] competition, drugs, high parasite density, lysed infected RBC

P. falciparum in vitro [23–24,34–35] drugs, co-culture healthy parasites

P. falciparum in vivo [49] drugs

TI. Terminal Investment: deteriorating state associated with increased conversion rates

P. chabaudi in vivo [36,38–39] drugs/ immunity

P. falciparum in vitro [23,35,37,40–43] drugs/immunity/conditioned medium/co-culture crisis parasites

P. falciparum in vivo [45–50] drugs

Results fall within 4 categories of which 3 are consistent with the reaction norm predicted in Fig 1. The group that

appears inconsistent with the reaction norm (NC) shows no change in conversion rate in response to perturbations

of state. It is possible that these studies have observed 2 points on the reaction norm where conversion is

coincidentally the same, for example, conversion is high when state is good and during terminal investment. These

studies span different species of parasite, experimental approaches, types of perturbations, and the accuracy of

methods used to estimate conversion rate, making our interpretations qualitative. Some studies feature in multiple

categories if for example, different parasite genotypes respond differently or different drugs elicit different responses.

Note that Carter and Miller [35] is of particular relevance, illustrating medium, low and high conversion in P.

falciparum in vitro cultures with good, deteriorating and bad state, respectively, though the authors did not interpret

their data in that way.

https://doi.org/10.1371/journal.ppat.1007371.t001
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Adaptive conversion rate modulation in vivo
To quantify the reaction norm for conversion rates in response to drug treatment, we estab-

lished P. chabaudi (genotype ER) infections in laboratory mouse hosts and treated parasites at

2pm GMT on day 11 post infection (PI) with different doses of pyrimethamine, which kills

asexual stages but not gametocytes [36] (see ‘Experiments’ in Materials and methods). Pyri-

methamine does not directly kill asexuals but accumulates inside them and prevents them

from reaching the end of the asexual cycle. Commitment to the production of asexual- or sex-

ual-stage progeny is thought to occur in the latter part of the asexual cycle [40, 57–60] so our

treatment was timed to affect the conversion decision of the treated cohort. We focus on day

11 because even after drug treatment, the densities of asexuals and the resulting gametocytes

are high enough to quantify (i.e. exceed the detection thresholds of our assays) regardless of

whether parasites increase or decrease conversion (for asexual parasite and gametocyte

dynamics see S2 Fig). For each infection, we examine whether the conversion rate produced

by the parasites that survive to the end of the asexual cycle on day 11 PI correlates with the

change in asexual density from day 11 to 12 PI. We quantified conversion rates using a new

method for statistical inference that overcomes the limitations of applying previous approaches

to dynamic infections [54]. This method uses longitudinal infection dynamics to estimate the

conversion rates adopted on each day PI for the duration of each infection. In particular, it

takes into account the accumulation of gametocytes over time, which is especially important

when asexual densities are in decline, making the method uniquely suited to testing parasite

responses to drug treatment [54] (see ‘Calculating conversion rate’ in S1 Text).

At the time of treatment, asexual stage densities were 2.24 (± SEM 0.06) �105 / μL blood.

Compared to pre-treatment densities, a loss of between 59 and>99% of parasites (Fig 3A)

occurred by day 12 PI due to the net effect of dose-dependent drug killing and replication of

the survivors. Neither red blood cell (RBC; F5,33 = 0.258, P = 0.93), asexual stage (F5,33 = 0.917,

P = 0.48), nor gametocyte densities (F5,33 = 0.859, P = 0.52) at the time of treatment differed

Fig 2. Conversion rate is adaptively adjusted in silico in response to a loss of state in a non-linear manner. Predicted optimal strategies and their fitness

consequences across drug doses that reduce parasite state; strategies highlighted for untreated infections (green: 0 mg/kg), low dose (purple: 5 mg/kg) and high dose

(blue: 15 mg/kg) drug treatment. (A) Compared to untreated infections, parasites should reduce conversion in response to low doses (reproductive restraint) but

increase conversion in response to high doses (terminal investment). (B) Fitness, measured as cumulative transmission potential post-drug treatment, is highest in

untreated infections (green) and reduced by drug treatment (purple and blue). Altering conversion rates allows parasites to partially compensate for the fitness costs of

drugs. When treated with a low dose, reproductive restraint (solid purple line) allows parasites to recover to the same rate of transmission as untreated infections (as

indicated by the slope of the solid green and purple lines) within 6 days. This also yields greater fitness than if parasites do not adjust conversion and follow the optimal

strategy for untreated infections (dashed purple line). Although too small to visualise due to the scale of y-axis, changing conversion in response to a high dose yields a

1% fitness benefit (solid blue line) compared to parasites that do not adjust conversion and follow the optimal strategy for untreated infections (dashed blue line). (C)

Optimal strategies are dose-specific. Fitness is calculated for parasites that follow the optimal strategies for low (purple) or high (blue) doses in each of the untreated,

low dose, and high dose environments, relative to the optimal strategy for untreated infections. Adopting reproductive restraint (purple) or terminal investment (blue)

costs fitness in untreated infections. At low doses, reproductive restraint (purple) is the optimal strategy and terminal investment is the poorest strategy. At high doses,

terminal investment (blue) is marginally better than reproductive restraint (purple).

https://doi.org/10.1371/journal.ppat.1007371.g002
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significantly across treatment groups (S2 Fig). Parasites adjusted conversion rates according to

the proportion of asexual stages lost from day 11 to 12 PI, in a nonlinear manner (P< 0.01,

Fig 3B). Parasites that experienced a reduction of up to 85% of asexual stages decreased con-

version, consistent with reproductive restraint, whereas conversion rates increased when more

than 85% were lost (shaded area in Fig 3B), consistent with terminal investment.

The observed strategies, which cannot be explained by differential mortality of gametocytes

and asexuals, are consistent with those adopted by multicellular taxa and those predicted to

maximise fitness. However, observing these strategies does not directly reveal the fitness conse-

quences of adjusting conversion. We therefore estimated the impacts (see ‘Data analysis’ in

Materials and methods) of changing conversion, compared to not changing conversion, on

within-host replication (Fig 3C) and the probability of between-host transmission (translated

from gametocyte densities according to [61]) (Fig 3D). Reproductive restraint increases within-

host replication rate (Fig 3C) but incurs a short-term cost to transmission (Fig 3D), whereas ter-

minal investment enhances short term transmission (Fig 3D) at a cost to replication (Fig 3C).

Fig 3. P. chabaudi parasites in vivo adjust conversion rate in response to a loss of state in a non-linear manner. (A)

Dose-response curve for the proportional change in asexual density (“state”) after drug treatment. Note, at the highest

drug doses,>99% but<100% of asexuals are lost and because infections were treated post peak, densities also decline

in the untreated control infections. (B) Parasites reduce conversion in response to losing up to 85% of their number

(reproductive restraint) and then switch to increasing conversion (terminal investment; grey shaded area). Following

[54], conversion rate is estimated for each infection based on gametocyte, asexual and RBC dynamics (see S2 Fig).

Mean ±SEM conversion rates are presented in black. The observed conversion rate strategies have short-term fitness

consequences in terms of within-host survival (C) and between host transmission (D). Specifically, relative to untreated

infections, reproductive restraint increases replication rate (C) but reduces the estimated probability of between-host

transmission (translated from gametocyte densities according to [61]) (D). All green lines and green shaded areas are

the predicted relationships ±SEM between parasite strategies and the loss of state from a generalised additive model,

and grey shaded areas represent the region in which parasites make a terminal investment.

https://doi.org/10.1371/journal.ppat.1007371.g003
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Overall, our data qualitatively confirm the predictions of our mathematical model—when

malaria parasites experience a change in state they plastically adjust conversion rates to maxi-

mise fitness by either decreasing or increasing conversion depending on the magnitude of the

assault on state. Previous experimental tests have probed parts of the reaction norm and sug-

gested reproductive restraint and terminal investment, but few studies—mainly in insects—

have quantified reproductive investment across the entire reaction norm [62–64]. Although

terminal investment is defined as the allocation of all remaining resources to reproduction,

even the most severe loss of asexuals in our experiment did not result in all asexuals producing

gametocytes. Parasites may experience constraints analogous to those operating in multicellu-

lar organisms at the end of life, where little energy is available to allocate to survival or repro-

duction when health is deteriorating and so, even when ‘terminal’, actual levels of investment

are often low [17, 62, 65]. Alternatively, the mechanism by which parasites make a terminal

investment may simply be the prevention of reproductive restraint.

State sensitive conversion rates across genotypes

Having found support for a non-linear reaction norm, we now ask what information parasites

base their conversion rate decision on. We propose that parasites adjust conversion rates in

response to a change in state, rather than detecting the concentration of pyrimethamine they

are confronted with. This is because the P. chabaudi genotype we used has not previously been

exposed to antimalarial drugs, drug resistant P. falciparum isolates do not adjust conversion

in response to drugs [24], and changes in conversion in both species have been recorded in

response to a range of drugs (Table 1). Moreover, increases and decreases in conversion can

be elicited by the same drug [24, 37]. In the previous section, we focused on the proportional

reduction in asexual stages as a proxy for a change in state (Fig 3B) but the absolute number of

asexual stages lost may also be a good proxy for state. While the absolute number lost produces

a qualitatively similar pattern for conversion rates (P = 0.01, S3 Fig), it explains significantly

less variation than the proportional reduction (S1 Table). This suggests that asexuals either

monitor the proportion of their cohort that will survive to the end of the cycle or measure a

proxy that correlates more closely with proportional change than the actual number that will

die. Intuitively, monitoring a change is a more informative metric for state than absolute num-

ber: density alone does not allow parasites to differentiate between increasing or decreasing

densities. For example, low density may be due to imminent clearance or because parasites are

establishing a new infection.

To further examine whether parasites respond to variation in their state we analyse previ-

ously published data from two independent experiments (see ‘Experiments’ in Materials and

methods) for which conversion rates can be estimated using Greischar et al’s method [54]. The

first experiment [66], exposed P. chabaudi genotype CWvir parasites to different doses of pyri-

methamine on day 5 PI to generate a range of asexual densities by days 11–15 PI. The second

experiment [25], perturbs asexual densities of genotypes AS and AJ via within-host competi-

tion with another genetically distinct genotype. These datasets include both expanding and

declining infections. Proportion killed is not an applicable measure of state for expanding

infections so, here, we use replication rate (from the conversion-decision-making cohort to its

progeny) as a proxy for state. We examine conversion rates for CWvir during days 11–15 PI

and on day 9 PI for AS and AJ because these periods reflect when parasites in control infec-

tions have conversion rates at intermediate levels, which facilitates the observation of both

increased and decreased conversion.

For all genotypes we find that parasites invest in gametocytes when asexual replication is

exponential, reduce conversion as replication becomes constrained, and increase conversion

Strategies for within-host survival and between-host transmission
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when infections decline severely (CWvir P< 0.01; AS and AJ P = 0.04; Fig 4). Thus, as we find

for genotype ER in our main experiment (Fig 3B), the reaction norms for CWvir, AS and AJ

switch from reproductive restraint to terminal investment as state declines. For ER, the switch

point between reproductive restraint and terminal investment is predicted when 85% of

asexual stages are lost, compared to 43% for CWvir, and 61% for AJ and AS combined. These

differences may reflect inter-experiment variation or genetic variation for how sensitive con-

version rates are to changes in state (i.e. a dynamic threshold for terminal investment [14]).

Different sensitivities to state could relate to differences in virulence, which affects the capacity

to recover replication. Further work to investigate reaction norms in relation to virulence is

required to test whether more virulent genotypes can withstand greater loss in number before

making a terminal investment or make a terminal investment early to compensate for the ele-

vated risk of host death.

Finally, the data for AS and AJ have been used previously to show that within-host competi-

tion induces reproductive restraint [25]. Here, we find that changes in state can equally explain

the effect of competition (including competition treatment does not increase the explanatory

power of statistical models with state; P = 0.10). Because state is the integrated effect of all

within-host factors that impact on asexual replication, monitoring state may enable parasites

to respond adaptively to a diversity of within-host factors without the need to detect each of

them individually. Thus, we envisage that plasticity in conversion has been selected for by

within-host stressors such as immune responses, competition, and resource limitation rather

than as a specific adaptation to cope with drug treatment; since parasites respond to state, this

enables them to mount an appropriate response to drugs too.

Fig 4. Other P. chabaudi genotypes adjust conversion in response changes in state. The densities of asexual stages

were perturbed by drug treatment for genotype CWvir (blue) and by within-host competition with one or two other P.

chabaudi genotypes for AS and AJ (combined, red). For these data we use replication rate as a proxy for state,

calculated as the density of the asexual cohort making the conversion rate decision relative to the density of its asexual

progeny. Replication rates are>1 for expanding infections and<1 in declining infections. Following [25, 66],

conversion rate is estimated for each infection based on gametocyte, asexual and RBC dynamics. Solid lines and

shaded areas are predictions ± SEM from generalised additive models for conversion as a function of replication rate.

https://doi.org/10.1371/journal.ppat.1007371.g004
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Red blood cell resource availability impacts on conversion

The adjusted r2 values for the reaction norms capturing variation in measures of state and con-

version rate for all three experiments range from 0.33 to 0.47, suggesting that additional factors

influence conversion rates. In addition to asexual stages acting as a resource to be invested into

gametocytes, RBC are another essential resource. Indeed, there are associations between the

development of anemia and gametocyte densities in natural infections of humans, and the age

structure of RBC strongly influences conversion rates of P. chabaudi [26, 27, 52, 67]. The avail-

ability of RBC also shape the state-dependent decisions P. chabaudi makes regarding the ratio

of male to female gametocytes [68]. Therefore, we investigated whether, in addition to state

(using the proportion of asexual stages lost as a proxy), variation in the availability of RBC also

influences the conversion rates of genotype ER in our main experiment.

We compared three generalised additive models with the following RBC metrics fitted as

main effects and in interactions with state: (1) The absolute density of RBC midway through

the cycle of the decision-making cohort. (2) The difference between RBC densities experienced

by the decision-making cohort and its parental cohort. (3) The absolute density of RBC mid-

way through the cycle of the parental cohort. Statistical models (1) and (3) reflect the possibil-

ity that parasites are sensitive to resource abundance per se, either during the period of

commitment to asexual or sexual progeny (1) or during invasion of RBC at the beginning of

the cycle (3); whereas statistical model (2) asks if parasites are sensitive to whether resources

are increasing or decreasing. The best statistical model (determined by AIC; S2 Table) is

model (2), with an adjusted r2 of 0.61. State retains the strongest association with conversion

rates, but when RBC density is increasing, parasites are more likely to adopt reproductive

restraint in response to a loss of state (Fig 5A). The data for CWvir [66] reveal a similar reac-

tion norm: parasites with increasing RBC have higher conversion when in good state and

are more likely to adopt reproductive restraint when state deteriorates (adjusted r2 = 0.55,

P< 0.01, Fig 5B). Note, the data set for AS and AJ [25] has insufficient variation in RBC densi-

ties for this analysis. The results for ER and CWvir suggest that parasites adopt stronger repro-

ductive restraint when hosts are recovering from anaemia. Prioritizing within-host replication

may enable parasites to take advantage of incoming RBC and maximise the source population

of asexuals for future investment into gametocytes.

Fig 5. In addition to state, changes in red blood cell (RBC) density modulate conversion rates. The reproductive

restraint region of reaction norms for (A) ER and (B) CWvir are steeper when RBC density is increasing (solid lines;

90th percentile) compared to remaining constant (dashed lines; 50th percentile) or decreasing (dotted lines; 10th

percentile). Percentiles for RBC change are used to normalise for the differing dynamics between the experiments and

are calculated as the difference in RBC density between the decision-making and parental cohorts of asexuals. Solid

lines and shaded areas are predictions ± SEM from generalised additive models for conversion as a function of both

replication rate (state) and changes in RBC density.

https://doi.org/10.1371/journal.ppat.1007371.g005
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Our analyses suggest that parasite responses to changes in state are modified by the avail-

ability of RBC resources, such that parasites in good state adopt higher conversion rates

when RBCs are increasing compared to when RBC are decreasing. To explore this further we

analysed two additional previous experiments in which: (i) ER infected hosts were treated

with erythropoietin (EPO) during days 4–7 PI [26] and (ii) hosts were treated with phenylhy-

drazine (PHZ) prior to infection with genotype ER, AS, AJ, or CR [27]. These experiments

allow us to investigate parasite responses to a range of changes in RBC density in the absence

of confounding perturbations in state. Although EPO stimulates the release of reticulocytes

into the blood, both EPO-treated and control hosts experienced the same range of changes

in RBC densities during the period we examine conversion rates (days 4–14 PI). As opposed

to EPO treatment, hosts treated with PHZ experienced substantially reduced RBC density as

well as an increase in the proportion of reticulocytes. We examined conversion on day 1 PI

because state begins to diverge between control and PHZ-treated hosts on subsequent days.

We focus on whether conversion rates correlate with the difference between RBC densities

experienced by the decision-making cohort and its parental cohort (i.e. as for statistical

model 2, above). Conversion rates correlate with changing RBC dynamics (adjusted r2 =

0.26, P< 0.01, Fig 6A) in the same manner in EPO-treated and control hosts (F1,5 = 0.016

p = 0.898). Specifically, conversion follows a non-linear pattern: parasites in good state, i.e.

with positive replication rates, adopt higher conversion rates if RBCs are increasing. Simi-

larly, in the PHZ experiment, conversion increases nonlinearly with increasing RBC densi-

ties (adjusted r2 = 0.19, P<0.01, Fig 6B).

Concluding remarks

Here, we reveal that evolutionary theory for life histories developed for multicellular taxa also

applies to unicellular parasites that experience a trade-off between reproduction and survival.

Previous studies in parasitology have suggested “terminal investment” but our life-history

approach has detected the full breadth of the parasites’ strategy (which we show spans from

reproductive restraint to terminal investment) whilst providing a rare examination, for any

organism, of plasticity in reproductive investment across an entire reaction norm.

Fig 6. Parasites in good state increase conversion rates as RBC densities increase. RBC density was perturbed

independently of parasite state for P. chabaudi parasites exposed to EPO (A, days 4–14 PI) or phenylhydrazine (B, day

1 PI). Change in RBC refers to the difference in RBC density between the decision-making and parental cohorts of

asexuals. Parasites were in good state during treatments in both experiments, with>90% exceeding a replication rate

of 1.61 (A) or 3.3 (B). Note, conversion in (A) is estimated following [54], while a simpler metric had to be used for (B)

(see ‘Experiments’ in Materials and methods). Lines and shaded areas are predictions ± SEM from generalised additive

models for conversion as a function of changes in RBC density.

https://doi.org/10.1371/journal.ppat.1007371.g006
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Malaria parasites have evolved a suite of strategies for surviving within the host (e.g., anti-

genic variation to escape immune responses [69]). Using reproductive restraint to prioritise

within-host survival and the long-term transmission opportunities this brings, in all but cata-

strophic circumstances, is in keeping with this. Given that the strategies we observe in P. cha-
baudi are analogous to those of taxonomically diverse multicellular organisms, we expect that

human malaria parasites in vivo [44–52] (Fig 1, Table 1) also adopt these strategies in response

to changes in state rather than the presence/concentration of specific drugs [24]. If so, plastic-

ity in conversion rates has clinical and epidemiological consequences: reproductive restraint

makes infections harder to clear, which could explain why some drug treated infections persist

and spread in the absence of drug resistance mutations [70], while terminal investment

increases short-term transmission, highlighting the value of drugs with gametocytocidal

action. Further, outcomes of drug treatment may be affected by anaemia, independent of para-

site dynamics [71]: if patients vary in the rate at which erythropoiesis replenishes RBC, the

same drug dose may induce different degrees of reproductive restraint by parasites. Stronger

reproductive restraint (to capitalise on the influx of resources) in patients recovering quickly

from anaemia could delay clearance and facilitate development of chronic infections. Ideally,

treatment should elicit terminal investment whilst deploying transmission-blocking measures.

Our analyses suggest the following scenario for how parasites make conversion rate deci-

sions. Each cohort of asexual stages commits to producing gametocytes or not in the latter half

of their cycle. This supports previous suggestions that commitment takes place at the schizont

stage [40, 57–60]. The conversion rate is based primarily on cue(s) reflecting how the density

of asexuals will change between the current and subsequent cycles, and information about the

supply of RBCs further modulates conversion, especially when parasites are in a good state.

How parasites detect state is unknown but recent work suggests P. chabaudi detects compo-

nents of lysed asexuals in the blood [32], while P. falciparum parasites may titrate the concen-

trations of different signals in exosomes [72], as well as the concentration of a host-derived

lipid, LysoPC, which is known to affect parasite state and conversion rate [40]. Parasites could

deploy cell-cell communication to disseminate information about state or respond individually

to a proxy, such that on average across the cohort, the correct conversion decision is made.

The cues (or proxies) relating to RBC resources are also unknown, although the age of an RBC

has been ruled out as having a direct influence on the conversion decision of the parasite devel-

oping within it [27]. The molecular mechanisms regulating the production of gametocytes are

being uncovered [40, 72] so the next challenge is to broaden this mechanistic understanding to

ask how parasites sense state and feed this information into commitment pathways. Trypano-

somes exhibit similar state-dependent investment in transmission forms (“stumpies”) and

their density-sensing pathway is known [73]. However, unlike malaria parasites, Trypano-

somes are unable to modulate investment in response to the genetic diversity of their infec-

tions, suggesting that sensing and signalling pathways may be more sophisticated in malaria

parasites [73]. Understanding such pathways opens up the possibility of interventions that

trick parasites into making suboptimal life history decisions [3]. Challenges such as measuring

conversion in natural infections to assess how much plasticity in conversion parasites display

and how this impacts upon rates of between-host transmission and prospects for within-host

survival, need to be overcome.

Materials and methods

Mathematical model

We extend a previously published mathematical model of the within-host dynamics of malaria

infections [55, 56]. This model is composed of delay-differential equations, tracking the
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densities of uninfected red blood cells (RBCs, R), infected RBCS (Eq 1), extracellular asexual

parasites called merozoites (M), and gametocytes (G). The changes in density of these variables

over time, t, are given by

dRðtÞ
dt
¼ l 1 �

RðtÞ
K

� �

� mRðtÞ � pRðtÞMðtÞ

dIðtÞ
dt
¼ pRðtÞMðtÞ � ðmþ mdÞIðtÞ � pRðt � aÞMðt � aÞS

dMðtÞ
dt
¼ ð1 � cðtÞÞbpRðt � aÞMðt � aÞS � pRðtÞMðtÞ � mMMðtÞ

dGðtÞ
dt
¼ cðtÞpRðt � aÞMðt � aÞS � mGGðtÞ

ð1Þ

where λ is the maximum rate of replenishing RBC, K is the homeostatic equilibrium density of

RBC, p is the rate at which asexual parasites invade RBCs upon contact, and β is the number of

parasites released from each infected RBC surviving the developmental period. The develop-

mental period is given by α, and is assumed to be one day for Plasmodium chabaudi. Death

rates of RBC, merozoites, and gametocytes are given by μ, μM, and μG, respectively. Drug-

induced killing of infected RBCs occurs at rate μd; as in previous work, we assumed that drug

dose affects the period of time over which parasite killing occurs (the day of drug treatment

plus L additional days, where L is dose-dependent), but not the rate of killing [56] as was previ-

ously quantified from experimental data [74]. Specifically,

L ¼ 3:557 �
2:586

1þ e� 8:821þd
; ð2Þ

where d is drug dose in mg/kg [56, 74]. In this delay-differential equation model, survival of

infected cells over this developmental delay must be explicitly tracked and is given by

S ¼

expð� mtÞ; t < a

exp
�
�
� R 11

t� a mdoþ
R t

11
mþ mddo

��
; 11 � t < aþ 11

exp
�
�
� R t

t� a mþ mddo
��
; aþ 11 � t � 11þ L

exp
�
�
� R 11þL

t� a mþ mddoþ
R t

11þL mdo
��
; 11þ L < t < aþ 11þ L

expð� maÞ; otherwise

:

8
>>>>>>>>>><

>>>>>>>>>>:

ð3Þ

Finally, conversion rate is determined by c(t), which is the proportion of parasites of a given

cohort of infected RBCs that become gametocytes. In our current model, conversion rate was

allowed to be a function of time, up until drug treatment, after which we assume that it is a

constant to isolate the qualitative influence of drug treatment on conversion rates. Default

parameter values are listed in S3 Table. Further details of the development of the baseline

model, including a graphical description of drug action, can be found in [56]. Below we

describe the extension of the model we use here.

Until day 11, c(t) is defined as a cubic spline with parameters given by the optimal strategy

predicted for untreated infections [56] ([28, 56, 74–79] see S3 Table). This generated estimates

of the densities of susceptible RBCs, infected RBCs, merozoites, and gametocytes at day 11,

just before drug treatment (S3 Table; note that these densities are identical to the day 11 values

plotted in black in Figure 3 of Birget et al. [56]). We then fed these values as starting conditions

back into the within-host model and used the optim function in R version 3.0.2 to identify the
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time-constant conversion rate that maximised parasite fitness over the remainder of the infec-

tion (days 11–20), for parasites receiving either no drugs, or pyrimethamine at doses from 0 to

15 mg/kg (killing up to 99.999% of asexual stages). Following previous studies, we measure

parasite fitness as the “cumulative transmission potential” (CMT) achieved by a given conver-

sion strategy [55, 56]. This metric capitalises on the predictive value of gametocyte densities

for mosquito infection [61, 80]. CMT is calculated by taking gametocyte dynamics predicted

by the within-host model, translating them into daily probabilities of transmitting to mosqui-

toes according to one empirical estimate of this relationship for P. chabaudi [61], and sum-

ming these across the remaining days of infection as a proxy for lifetime reproductive output.

From [61], and assuming all else equal with respect to other factors that could influence trans-

mission (e.g. vector biting rates, host immunity, vector susceptibility, time-of-day of transmis-

sions [61, 81, 82]), the probability of transmission for a given gametocyte density, G(t) is given

by

exp ½� 12:69þ 3:6 log
10
GðtÞ�

1þ exp½� 12:69þ 3:6 log
10
GðtÞ�

ð4Þ

Finally, to provide validation that the predicted ‘optimal’ strategies for a given drug envi-

ronment outperform other strategies, we simulated infections with parasites employing each

of the putative best strategies for representative doses of 0, 5 or 15 mg/kg, treated with each of

these three drug doses (S1 Fig) and calculated CMT.

Experiments

We infected fifty C57/Bl6 10–12 week old female mice with 105 Plasmodium chabaudi, geno-

type ER710 parasitised red blood cells (RBC) at ring stage by intraperitoneal injection. The P.

chabaudi parasites used have not been previously exposed to, and were sensitive to, pyrimeth-

amine. Pyrimethamine treatment at doses of 0 (N = 6 infections), 0.5 (N = 9), 1 (N = 9), 2

(N = 9), 10 (N = 9) or 25 mg/kg (N = 8), dissolved in 20 μL DMSO, was administered by intra-

peritoneal injection at 2pm GMT on day 11 post infection (PI). Red blood cell (RBC), asexual

stage and gametocyte densities at the time of treatment did not differ significantly across treat-

ment groups (RBC: F5,33 = 0.258, P = 0.93; asexual: F5,33 = 0.917, P = 0.48; gametocytes F5,33 =

0.859, P = 0.52). We quantified RBC densities by flow cytometry and parasite dynamics by

quantitative PCR (qPCR, see ‘Quantifying parasite densities’ in S1 Text), daily from day 9–18

PI [53, 66].

We also carried out analyses of previously published data for genotypes CWvir (experiment

3 in [66], N = 20 infections) and AS and AJ (N = 25 infections [25]) to investigate the influ-

ences of state and RBC on conversion rates. Briefly, the experiment using CWvir exposed para-

sites to 0, 4, 8, 12 or 20 mg/kg pyrimethamine on day 5 PI (N = 4 infections per dose). RBC,

asexual stage, gametocyte densities and the proportion of asexual stages killed (“state”) on day

11 PI are presented in S4 Table for comparison to the main experiment with ER and treatment

on day 11 PI. The experiment using AS and AJ exposed parasites to within-host competition

with 1 or 2 genetically distinct genotypes for the duration of infections. The AS and AJ data

included parasites in single genotype infections (N = 5 AJ, N = 5 AS) and experiencing within-

host competition in mixed-infections (N = 10 AJ and N = 5 AS). We combine AS and AJ data

to achieve sufficient power for an analysis covering a broad range for variation in state. For

both additional datasets, RBC were quantified using flow cytometry and gametocyte densities

using RT-qPCR. Asexuals were quantified using qPCR for AS and AJ (see ‘Quantifying para-

site densities’ in S1 Text) and by microscopy for CWvir.
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To explore how conversion rates relate to RBC dynamics independently of changes in

state, we analysed two further experiments that manipulated RBC densities / age structure by

administering erythropoietin (EPO) [26] or phenylhydrazine (PHZ) [27]. For the EPO

experiment [26], 15 C57Bl/6 mice were infected with P. chabaudi genotype ER, and treated

with 0.1mL of 100U/L EPO on days 3–7 post infection (N = 8), or placebo (N = 7). EPO treat-

ment increased reticulocyte densities, but did not significantly alter asexual parasite densities

(i.e. no effect on state) [26]. Conversion rates were determined based on microscopy counts

of asexual parasites and gametocytes. One EPO-treated mouse was excluded from the analy-

ses because the residuals showed a significant relationship to natural logged densities of

gametocytes (see ‘Calculating conversion rate’ in S1 Text). In the PHZ experiment [27],

C57Bl/6 mice were treated with PHZ at doses of placebo (n = 22), 30 (n = 23) or 120mg/kg

(n = 23) 4 days prior to infection with P. chabaudi genotype AS, AJ, CR or ER. Phenylhydra-

zine treatment resulted in a dose-dependent influx of reticulocytes by the time infections

were initiated, but there was no significant difference in asexual densities between genotypes

or PHZ treatments (i.e. no effect on state) [27]. Because the data series was too short to apply

the Greischar method [54] for calculating conversion, we used the gametocyte densities on

day 3 PI divided by asexual densities on day 1 PI to approximate conversion rates. This

approximation can only be used reliably when accumulation of gametocytes from previous

cohorts is minimal and independent of treatment group, as is the case at this early time

point.

All experiments were carried out in accordance with the UK Animals Scientific Procedures

Act 1986 and have been subject to ethical review and approved by the Home Office and the

University of Edinburgh.

Data analysis

All statistical analyses were carried out with R version 3.1.3 package mgcv 1.8–6 (The

R-Foundation, Vienna, Austria). We minimised nested models using maximum likelihood

deletion tests and compared non-nested models with AIC. First, we used generalised linear

models to confirm that there were no between-group differences in densities of RBCs, asex-

ual stages or gametocytes at the time of administering drug treatment to ER infections. Sec-

ond, to analyse conversion rates on the day of drug treatment we used generalised additive

models with a normal error distribution, after square root transformation to meet assump-

tions of homogeneity of variance. To determine the best measure for state, we constructed

generalised additive models including the proportion or absolute number of asexual para-

sites killed for the day before, or the day during which, parasites commit to sexual reproduc-

tion, and asexual stage density on the day of sexual commitment. We used AIC to select the

model explaining the most variance in conversion rate (S1 Table). We then extended these

models to explore whether RBC resources also correlate with conversion rates. Third, to

determine how the observed reaction norm for conversion rate against state impacts on

between-host transmission, we multiplied conversion rate with asexual stage density. We

converted these predicted gametocyte densities into probabilities of transmission (fitness)

according to Eq 4 above, assuming all other factor that influence transmission (a.o. mosquito

biting rate, host immunity, mosquito susceptibility) are equal [61]. Although time-of-day

may affect transmission efficacy [81, 82], host, parasite and mosquito time-of-day have been

controlled for in our experiment thus allowing for comparison of transmission probability

between groups. The proportional change in transmission probability resulting from chang-

ing vs. not changing conversion, is estimated as transmission probabilities of drug treated

groups relative to that of the untreated groups. Fourth, we estimated the impact of the
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predicted reaction norm of conversion rate against state for within-host survival as the num-

ber of asexual parasites from the focal cohort that contribute to asexual replication (i.e. “1 –

conversion rate”) before drug killing occurs and the survivors undergo schizogony. The

change in asexual density due to changing conversion is presented as the difference in asex-

ual density of the treated and the untreated groups. Finally, we used generalised additive

models, as described for ER, to analyze previously published data for CWvir [66] and AS and

AJ [25]. In contrast to the analysis of ER data, we defined state as replication rate to capture

the much greater range of changes in asexual density (i.e. from parasites tripling in every rep-

lication cycle to severe decline) than in our main experiment. For CWvir it was also neces-

sary to control for day PI and differences in RBC densities between treatment groups at the

start of data collection. For the EPO [26] and phenylhydrazine experiments [27], analyses

were performed as described above, with the exception that we test if conversion rates

depend on changes in RBC resources, not state. Additionally, for the EPO experiment, gener-

alised additive mixed models were used, including mouse as a random effect.

Supporting information

S1 Fig. Infection dynamics resulting from predicted optimal conversion rate strategies. (A)

The dynamics of uninfected RBCs, (B) infected RBCs and (C) gametocytes, for the optimal

strategies in untreated infections (green: 0 mg/kg), and during low dose (purple: 5 mg/kg) or

high dose (blue: 15 mg/kg) drug treatment. All infections follow the same patterns (black)

before drug treatment is given on day 11 PI (indicated with vertical grey bar).

(TIF)

S2 Fig. Infection dynamics for genotype ER asexual stages and gametocyte densities in the

main experiment. Pyrimethamine drug treatment at day 11 post infection (PI) reduces asexual

parasite densities (closed symbols) and affects gametocyte densities (open symbols). All doses

are subcurative (B-F) and dynamics of untreated control infections (A) are as expected, i.e.

declining because infections are in the post-peak phase. Mean ± SEM plotted for each dose-

specific treatment group (0 mg/kg (A); 0.5 mg/kg (B); 1 mg/kg (C); 2 mg/kg (D); 10 mg/kg (E);

25 mg/kg (F)). Note that conversion rates cannot easily be deduced from comparing gameto-

cyte dynamics during infections because, for example, gametocytes of multiple cohorts can

overlap. Details about how the method of inference we use to estimate converison [54] over-

comes these issues can be found in S1 Text and a summary of conversion rates related to these

parasite dynamics on day 11 PI is presented in Fig 3.

(TIF)

S3 Fig. Non-linear reaction norm for conversion rate as a function of the absolute number

of asexual stages killed by antimalarial drugs. The predicted pattern for converison is recov-

ered when the density of asexuals lost is used as a proxy for state. Specifically, ER parasites

reduce conversion rates when less than 1.5 x105 asexual stages are killed and increase their

conversion when larger numbers of parasites are killed. Solid line illustrates the predicted pat-

tern (± SEM, shaded area) from a generalised additive model. Note, the proportion of asexual

stages killed correlates more closely with conversion rates than the absolute number killed

(Main text Fig 3B, S1 Table).

(TIF)

S1 Table. Statistical model selection to identify proxies for “state” that correlate with con-

version rate (CR).

(DOCX)

Strategies for within-host survival and between-host transmission

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007371 November 14, 2018 16 / 21

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007371.s001
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007371.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007371.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007371.s004
https://doi.org/10.1371/journal.ppat.1007371


S2 Table. Statistical model selection to identify putative cues for conversion rate (CR) deci-

sions.

(DOCX)

S3 Table. Parameter values used in the mathematical within-host model of state-depen-

dent conversion rates.

(DOCX)

S4 Table. Comparison of infection parameters for the main experiment following P. cha-
baudi genotype ER treated on day 11 PI and the day 11 PI for the additional data analysed

for CWvir (treated on day 5 PI).

(DOCX)

S1 Text. Additional materials and methods.

(DOCX)
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(DOCX)
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