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In vertebrate hosts, malaria parasites produce specialized
male and female sexual stages (gametocytes). Soon
after being taken up by a mosquito, gametocytes rapidly
produce gametes and, once mated, they infect their vec-
tor and can be transmitted to new hosts. Despite being
the parasite stages that were first identified (over a cen-
tury ago), gametocytes have remained elusive, and basic
questions remain concerning their biology. However, the
postgenomic era has substantiated information on the
specialized molecular machinery of gametocytogenesis
and expedited the development of molecular tools to
detect and quantify gametocytes. The application of such
highly sensitive and specific tools has opened up novel
approaches and provided new insights into gametocyte
biology. Here, we review the discoveries made during
the past decade, highlight unanswered questions and
suggest new directions.

The dawn of molecular detection
Malaria is a debilitating disease that is responsible for
between one and three million deaths annually, across
tropical and subtropical climatic zones. The causative
agents, Plasmodium parasites, replicate asexually in the
blood of their vertebrate hosts, and a proportion of these
asexually produced parasites differentiate into male and
female sexual stages (gametocytes). Whereas the asexual
stage in the life cycle of the parasite is responsible for
clinical disease, gametocytes are responsible for trans-
mission from host to vector. When taken up in the blood-
meal of a vector, male and female gametocytes
immediately leave their red blood cells and produce
gametes, which then mate and differentiate into stages
that are infective to mosquitoes. Parasites then progress
through several developmental stages in their vector, cul-
minating in sporozoite stages that move to the salivary
glands, ready to be transmitted to new hosts. Although
sexual reproduction in Plasmodium parasites was discov-
ered over a century ago, key questions about gametocyte
biology remain. For example, the investment in gameto-
cytes (the density of gametocytes relative to asexual forms,
or conversion rate) and their sex ratio (the proportion of
gametocytes that are male) both vary extensively across
and within parasite species, populations and individual
infections. Progress is being made in uncovering the genes
and proximate mechanisms responsible [1–4], but the
ultimate evolutionary explanations for this variation
remain poorly understood [5–8].

Given the essential role that gametocytes have in trans-
mission and the drive to develop clinical interventions that
disrupt sexual reproduction, why are there still fundamen-
tal unanswered questions about their biology? This is, at
least in part, because gametocytes occur at much lower
densities than asexual parasites, which makes them more
difficult to detect. However, with the development of a
gametocyte-specific PCR assay for P. falciparum in 1999
[9], the elusive gametocytes became detectable with
greater sensitivity. Over the past decade [10], the contin-
ued development of molecular techniques has provided
assays that are sensitive enough to: (i) detect and quantify
gametocytes at low densities [9,11–13]; (ii) differentiate
gametocytes at early and late stages of development [14];
(iii) quantify gametocytes produced by different parasite
genotypes in multi-genotype infections [15,16]; (iv) deter-
mine the expression pattern of sexual-stage-specific genes
[17]; and (v) distinguish between male and female game-
tocytes, including those produced by different genotypes in
multi-genotype infections [18]. These assays have stimu-
lated major lines of research, from epidemiological and
population-level surveys of gametocyte carriers and their
transmission potential to the performance and behaviour
of individual parasite genotypes during infections and the
assessment of transmission outcomes after anti-malarial
therapy. Here, we provide an overview of the insights into
Plasmodium gametocyte and transmission biology gained
using molecular tools over the past decade (Box 1). We
suggest approaches to tackle some of the remaining ques-
tions and discuss the implications for control measures.

The ‘growing’ reservoir of infectious gametocytes
Surveys based on the examination of blood smears by
microscopy have consistently shown that gametocytes
are observed only in a subset of infected patients [7].
However, malaria parasites can transmit from these sup-
posedly ‘non-infectious’ hosts, and the presence of game-
tocytes at extremely low densities has long been suspected
[5]. Molecular-amplification-based techniques are sensi-
tive enough to detect and quantify gametocytes at very
low densities (e.g. 0.02–10 gametocytes per microlitre [12])
and have confirmed the presence of gametocytes at
densities too low to be detected by standard microscopy
methods. We refer to gametocyte densities that are unli-
kely to be detected by microscopy but can be detected by
molecular methods as ‘submicroscopic’. Submicroscopic
gametocyte carriers exist at a higher frequency than
expected and at all levels of endemicity [12,19–25], and,
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most importantly, make considerable contributions to
transmission [26]. The successful infection of vectors is
generally positively correlated to gametocyte density
[26–31], but the probability of mosquito infection at low
gametocyte densities is higher than that predicted by
simple linear relationships. This raises the possibility that
gametocytes can cluster in the capillaries [32–34] or that
per-gametocyte infectivity is density-dependent. The sec-
ond scenario could occur if transmission-blocking immune
factors aremore likely to be found in bloodmeals from high-
density infections [33].

In addition to the density and sex ratio of gametocytes,
transmission success is also influenced by the timing of
gametocyte production. Molecular assays have revealed
that this is of particular importance in areas with seasonal
transmission because asymptomatic infections with sub-
microscopic gametocyte densities are likely to be the source
of annual epidemics in these areas [20,35]. These infections
continue to produce gametocytes at low levels throughout
the transmission-free season, and parasites might be
capable of increasing the gametocyte conversion rate in
response to cues that indicate the start of the transmission
season. There are many cues that parasites could use as
correlates of the transmission season, but studies testing
whether parasites respond to the presence of mosquitoes
probing their hosts (for example, detecting factors pro-
duced from mosquito salivary glands) have given mixed
results. There is some support for the hypothesis that
parasites of the rodent malaria Plasmodium chabaudi
increase investment in gametocytes [36], but no change
was observed when this experiment was repeated in a
larger-scale study with P. chabaudi and Plasmodium
vinckei [37]. It is not yet clear why parasites in these
chronic infections continue to produce gametocytes
throughout the transmission-free season [19,20]. Investi-
gating whether the conversion to gametocytes during the
transmission-free season is a constraint (by-product) of the
cell cycle or an adaptation is a key question. Understand-
ing how host immune responses regulate parasitaemia in
chronic infections might help to explain patterns of game-
tocyte investment. For example, investing in gametocytes
could ensure that the asexual parasite density stays low
during recrudescence, which might enable parasites to
keep their total numbers below the threshold for the
reactivation of the immune system. Alternatively, these
chronic infections often comprise multiple genotypes, and
competition between parasites could shape the patterns of
gametocyte investment [38].

Hostile in-host environmental conditions
An increase in gametocyte conversion has been observed in
response to drug therapy and various forms of host anae-
mia [16,39–46]. Gametocyte conversion is increased
when reticulocytes (immature erythrocytes) are added to
P. falciparum culture [46] and, in the rodent malarias
P. chabaudi and Plasmodium berghei, when reticulocyte
release and production is stimulated by administering
phenylhydrazine to their hosts [47]. More recently, exper-
imental infections have implicated erythropoietin (EPO), a
hormone produced by anaemic hosts, as a possible parasite
cue for gametocyte conversion and sex-ratio alteration
[43,44]. Because correlations between gametocyte density
and reticulocyte density (positive correlation) or haemato-
crit (negative correlation) have been documented in
natural [48] and experimental infections [49], elucidating
whether parasites are responding to EPO or reticulocytes
is necessary to determine what factors parasites monitor
throughout their infections. Intriguingly, P. chabaudi, a
species that can infect reticulocytes, responds to EPO by
upregulating conversion, but P. vinckei, which only infects
mature erythrocytes, responds by altering its sex ratio
instead. This indicates that the host-cell preference of

Box 1. Developments and discoveries made during a

decade of molecular gametocyte detection

1999 Qualitative detection of P. falciparum gametocytes by reverse

transcriptase (RT)-PCR confirms the presence of submicroscopic

gametocytes [9].

2000 Qualitative genotype-specific RT-PCR to detect P. falciparum

gametocytes reveals that multiple co-infecting genotypes within an

infection can simultaneously produce gametocytes [15].

2002 RT-PCR used to show that gametocytes at submicroscopic

densities are present in infections during the transmission-free

season in Sudan [19].

2004 Quantitative nucleic acid sequence-based amplification (NAS-

BA) developed to distinguish P. falciparum gametocytes at early and

late stages of development reveals that gametocytes are produced

soon after parasites are released from the liver [14].

2005 Genotype-specific RT-PCR reveals that multi-genotype infec-

tions of P. falciparum persist and produce gametocytes for longer

during transmission-free season than single-genotype infections [20].

2006 Real-time quantitative assays developed to quantify gameto-

cyte densities for P. falciparum [12] and P. chabaudi [13]. In

P. falciparum, gametocytes at submicroscopic densities are com-

mon post-treatment and these infections contribute considerably to

transmission [12,21]. Previous beliefs, based on microscopic data,

are that treatment can result in increased gametocyte prevalence.

Molecular assays show that this post-treatment peak in gametocyte

prevalence reflects an increase in gametocyte density to levels that

are more likely detected by microscopy [12,53]. Furthermore,

artemisinin-based combination therapy (ACT) reduces gametocyte

density and the proportion of mosquitoes infected but does not

affect the proportion of patients with infectious gametocytes

(infectious reservoir) [12,21].

2007 Real-time RT-PCR reveals that P. chabaudi genotypes do not

alter their gametocyte conversion rate in response to competition

with a co-infecting genotype [65]. However, when competition

occurs between a drug-resistant and a drug-sensitive genotype and

infections are treated to clear the sensitive genotype, the resistant

genotype achieves higher gametocyte densities than when in

single-genotype infections [16]. Quantitative genotype-specific and

sex-specific RT-PCR developed to quantify P. chabaudi gametocyte

densities and sex ratios of individual genotypes in multi-genotype

infections [18]. In P. falciparum, more gametocyte carriers are

detected using QT-NASBA than microscopy in Burkina Faso [22] and

Tanzania [23,24], and submicroscopic gametocytes contribute to

transmission [26]. Primaquine treatment can clear all gametocytes

remaining after treatment with ACT and sulphadoxine–pyrimetha-

mine [23].

2008 Quantitative genotype-specific and sex-specific RT-PCR for

P. chabaudi reveals: genetic variation for patterns of sex-ratio

variation observed throughout infections; sex-ratio patterns corre-

late with host anaemia, and total parasite and gametocyte density;

and genotypes increase their investment in male, relative to female,

gametocytes in response to the presence of co-infecting genotypes.

Genotype-specific RT-PCR for P. falciparum reveals that minority

genotypes in multiple-clone infections are able to transmit to

mosquitoes [25]. In mixed-species infections with Plasmodium

malariae, P. falciparum gametocyte densities are higher than in

single-species infections [79].
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parasite species also influences their patterns of conver-
sion. These problems could be tackled by using molecular
assays to detect young gametocytes and accurately
quantify conversion.

Elevated gametocyte densities after exposure to anti-
malarial drugs have been observed in the rodent malarias
P. chabaudi and P. vinckei [40–42] and in the human
malaria P. falciparum [12,21,45,50–55]. In the rodent
malarias, this response is thought to be due to increased
gametocyte conversion, but in P. falciparum, post-treat-
ment peaks of gametocyte density often occur sooner than
the development time required for a new cohort to appear.
Molecular methods have provided data [12,53] to support
the hypothesis [45] that the drug-induced release of
sequestered gametocytes occurs, rather than an increase
in conversion. Whether mature (infectious) or immature
(non-infectious) gametocytes are released from sequestra-
tion is not known, but this could be investigated by
monitoring post-treatment gametocyte cohorts by using
molecular assays that detect transcripts of early- and
late-stage gametocytes. Furthermore, whether this vari-
ation in sequestration time represents a by-product of drug
action or is an adaptive shortening of development time
remains to be tested. Why should rodent, but not human,
malaria parasites increase conversion? Clues could lie in
the considerable difference in the gametocyte development
time of these taxa. Rodent malaria gametocytes take 36–

48 h to reach maturity, so these species might be able to
produce a timely response to the rapid action of drugs,
whereas the 7–10 days that are required for P. falciparum
gametocytes to develop might constrain their ability to
keep up with rapid or unpredictable drug action and would
certainly result in changes to conversion being more diffi-
cult to correlate with events in the past.

Gametocytes in multigenotype infections
Most malaria infections of humans and other animals
contain many genotypes [49,56–60] owing to sequential
infection in areas of high transmission intensity or the
simultaneous acquisition of multiple genotypes from a
single mosquito bite. Molecular assays have revealed that
individual genotypes within an infection produce gameto-
cytes simultaneously and, inmultigenotype infections, this
process lasts longer than in single infections [20]. Under-
standing how the genetic complexity of co-infecting para-
sites influences gametocyte dynamics and their infectivity
to mosquitoes is central to understanding transmission
dynamics at the population level. In addition, synthesis
of data on the performance of individual genotypes during
multi-genotype infections and the probability of their sim-
ultaneous transmission to mosquitoes will provide better
estimates of recombination rates [61].

In addition to their ability to detect gametocytes at low
density, molecular assays also enable the discrimination
and quantification of gametocytes produced by different
genotypes within the same infection. So far, genotype-
specific assays have been developed for P. falciparum
and P. chabaudi gametocytes [15,16]. The application of
these assays has revealed that co-infecting genotypes can
simultaneously produce gametocytes and transmit,
throughout both clinical and asymptomatic P. falciparum

infections [25]. The presence and density of co-infecting
genotypes can fluctuate markedly throughout their infec-
tions [35,57] as a result of within-host competition. For
example, the genotypes that are best at competing for red
blood cells or evading the immune system might have a
transmission advantage over their co-infecting competi-
tors. Transmission studies have supported this prediction
by showing that althoughminority genotypes can transmit
[62], the transmission of competing genotypes is reduced
[63]. Furthermore, when competition occurs between drug-
resistant and drug-sensitive genotypes, the resistant gen-
otype tends to be at a disadvantage in the absence of drugs
[16].

Laboratory studies using P. chabaudi have shown that,
in general, virulent (majority) genotypes have a competi-
tive advantage and tend to suppress the growth of less-
virulent (minority) competitors [16,63–65]. Faster-growing
genotypes could out-compete others through resource com-
petition or by eliciting an immune response that was
sufficient to clear minority, but not majority, genotypes,
and these two mechanisms are not mutually exclusive. By
keeping conversion to gametocytes low, fast-growing gen-
otypes can maximize their investment in asexual replica-
tion and, thus, acquire a greater share of host red blood
cells than their competitors [38]. Furthermore, genotypes
that maintain high asexual densities relative to gameto-
cytes could shelter their gametocytes from strain-specific
immune responses acting in the host or minimize the
availability of gametocyte antigens that elicit the devel-
opment of transmission-blocking immune factors. These
hypotheses remain to be tested but could reveal that lower
gametocyte conversion has evolved in areas with high
transmission, when compared to areas of low transmission
[38]. However, in P. chabaudi, experiments indicate that
genotypes do not conditionally alter conversion when in a
single- or a double-genotype infection [18,65].

Most laboratory-based studies have focused on gameto-
cyte dynamics during the acute phase of infections, but the
transmission advantage of virulent (majority) genotypes
might not extend into the chronic phase because the de-
velopment of anaemia and the immune response could
alter the balance between asexual replication and game-
tocyte density. Quantifying genotype-specific investment
into gametocytes during chronic infections in which co-
infecting genotypes vary in competitive ability would be
useful. Assays designed specifically to detect the gameto-
cytes of minority genotypes will avoid the problem of over-
amplifying majority genotypes and, thus, missing the
minority ones of interest [66]. However, although geno-
type-specific assays can be designed for experimental infec-
tions with well-identified genotypes, unknown genotypes,
which make the identification of suitable genotype-specific
assays more difficult, are expected in field studies.

Sophisticated sex allocation
Successful transmission to vectors is related not only to the
density of infectious gametocytes but also to their sex ratio.
Sex ratios inmalaria parasites are generally female-biased
[8], and evolutionary theory predicts that sex ratios reflect
the inbreeding rate [67–69]. When taken up in a bloodmeal
of a vector, gametocytes must rapidly form gametes, and
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fertilization can occur between gametes from the same
(inbreeding) or different (outbreeding) genotypes. Each
male gametocyte can differentiate into up to eight gametes,
whereas each female gametocyte differentiates to form a
single gamete. Therefore, because males can each fertilize
more than one female, a female-biased sex ratio maximizes
fertilization success and, thus, represents the most effi-
cient allocation of resources [68,69]. However, this is only
the case when the gametocytes in a bloodmeal are geneti-
cally related and inbreeding occurs. In this situation, by
producing the minimum number of male gametocytes
necessary to fertilize the females, parasites are reducing
competition for mates between related males and they are
maximizing the number of females with which they can
mate. Conversely, when infections are composed of several
genotypes, the greatest fitness benefits come from increas-
ing investment in male gametocytes. This is because a
genotype will gain more fertilizations from each male
gametocyte (because each will mate with several females)
than from each female (which can be mated only once)
[68,69].

The application of this theory to malaria parasites has
been rather controversial [8,70] because it does not explain
why sex ratios vary throughout infections [18] or why
population sex ratios in related Apicomplexans do not
correspond to their inbreeding rate (see, for example,
Ref. [71]). The strongest support for this theory in other
taxa has come from experimental tests that show that
individuals can evaluate the inbreeding rate and faculta-
tively adjust their sex ratio accordingly [72]. The recent
development of molecular assays that are both genotype-
and sex-specific has enabled analogous experiments and
revealed that P. chabaudi genotypes can evaluate their
inbreeding rate and adjust their sex ratio as predicted [49].
More broadly, this also reveals that P. chabaudi parasites
can discriminate genetically identical clone-mates from
con-specific genotypes in their infections. Whether they
are able to ‘discriminate kin’ directly (for example, using
‘quorum sensing’) or indirectly (by using some information
about their environment, such as the presence of different
immune factors) is yet to be investigated.

The use of sex-specific assays to track sex ratios
throughout single-genotype infections of P. chabaudi has
also revealed that patterns of sex allocation during infec-
tions correlate with factors such as gametocyte density and
host anaemia [49]. Specifically, more males are produced
when gametocyte and red blood cell density are low, and
reticulocyte density is high. When sex ratios are very
female-biased and gametocyte density is low or hosts are
anaemic, there is a risk of too few males being taken up in
bloodmeals to fertilize the females. Furthermore, even if
there are plenty of gametocytes, transmission-blocking
immune factors could impair the ability of males to make
viable gametes, and the development of such immune
factors has been proposed to coincide with anaemia [43].
Therefore, in either of these scenarios, genotypes must
ensure that their females are fertilized by investing in
extra males (more than expected from their inbreeding
rate alone) [8,73]. To date, the experimental work has been
focused largely on P. chabaudi, so developing assays to test
these hypotheses more generally is required. Molecular

assays to discriminate different genotypes in natural infec-
tions of the lizard malaria, Plasmodium mexicanum, have
already been developed, and field experiments with this
system are possible [74].

Concluding remarks
Over the past decade, molecular methods have superseded
traditional microscopy because they have enabled, for the
first time, gametocytes at low densities to be readily quan-
tified and gametocytes produced by parasites of different
genotypes inmulti-genotype infections to be distinguished.
Molecular methods have also facilitated the reliable and
rapid detection and quantification of gametocytes at differ-
ent developmental stages and sexes. Some long-standing
questions have been answered and new lines of research
have developed.

Future directions
Gametocytes might no longer be elusive, but many mys-
teries and challenges remain. For example, despite recent
advances in mapping genes that are involved in gameto-
cytogenesis [1], many aspects of gametocyte biology are
unclear. One such outstanding question is, ‘How is the sex
of gametocytes determined?’ [75]. A better understanding
of how sex allocation is influenced by changes in anaemia,
immune factors, genotype multiplicity and variable
environmental factors (such as mosquito abundance and
drug pressure) could provide valuable clues. This could be
achieved by integrating expression profiles of a large
number of gametocyte- and sex-specific proteins of Plas-
modium parasites into methods to analyse gametocytes in
different stages of development, maturity and sexes. Test-
ing when, why and how gametocyte conversion is shaped
by environmental factors and by competition in multi-
genotype infections is also necessary. This requires differ-
entiating gametocytes produced by different genotypes,
which is a considerable challenge in natural infections.
However, a combination of several gametocyte-specific
quantification assays based on unlinked single-copy poly-
morphic genes will reduce the probability of underestimat-
ing the number of gametocyte-producing genotypes in
natural infections. By continuing to develop and refine
molecular methods, we expect that the next decade will
reveal a deeper understanding of gametocyte biology and of
the mating biology of gametes.

A better understanding of factors that influence game-
tocyte investment and transmission is essential to the
development and evaluation of clinical interventions that
disrupt sexual reproduction in Plasmodium. For example,
asymptomatic infectious individuals are of major import-
ance from a public health perspective. The identification of
‘gametocyte carriers’ and factors that can lead to increased
transmission has been considered very important for deter-
mining the sources of infection in a community. Withmany
asymptomatic carriers contributing to transmission, the
feasibility and public health impact of gametocyte-targeted
control, such as intermittent preventive treatment and
mass treatment [23,76,77] might need to be revised.
Especially in areas with marked seasonal transmission,
a reduction of the infectious reservoir over consecutive
years could reduce the basic reproduction rate (R0; the
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number of future cases derived from one infective case at
the present time) to a controllable level. However, a limita-
tion to this approach in the short term is the presence of
drug-resistant parasites that can overcome the effect of
drugs used and escalate in frequency in the face of drug
pressure [76,77]. For the determination of malaria-control
strategies, outcomes related to transmission, including
post-intervention gametocyte prevalence and density,
should be assessed and measures to counter increased
gametocytaemia should be considered. Therefore, molecu-
lar gametocyte detection and quantification should be
added to existing protocols for the evaluation of control
strategies, including anti-malarial drugs efficacy [78].
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