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Lay Summary 

Malaria parasites cause devastating disease of huge global medical and economic 

importance. In order to infect new hosts, malaria parasites need to produce 

specialised male and female stages, which are taken up by mosquitoes while blood-

feeding. Mating then occurs within the mosquito and the resulting offspring are 

eventually transmitted to new hosts through infective bites. Despite several decades 

of biomedical research, the basic biology and behaviour of parasite reproduction 

remains unclear. This thesis investigates the complex strategies that malaria parasites 

employ to maximise their survival during an infection in the human host as well as 

during their subsequent transmission between hosts.  Currently, the trigger for 

producing male and female stages is not known, neither is how many, or how often 

they are produced. Furthermore, how males find females within the hostile 

environment of the mosquito gut is not known. My approach covers two themes 

which bridge the scales between parasite strategies within the host and their mating 

tactics in the mosquito vector; both of which have important implications for the 

spread of disease. Using rodent malaria parasites as a model system, I conducted 

experiments to: 

1. Identify factors that cause parasites to change their production of male and 

female stages.  

2. Use holographic 3D microscopy (in collaboration with the Physics 

community) to identify the shape and swimming dynamics of male malaria 

flagella, and discuss the implications for mating success in the mosquito. 

3. Show that high densities of red blood cells in the mosquito bloodmeal are 

likely to hinder successful mating. 

4. Reveal that male gametes move non-randomly through the bloodmeal.  

5. Demonstrate variation in the factors that initiate mating within the mosquito.  

 

The data presented here advance our understanding of malaria parasite reproduction 

and could have important implications for disease control, by providing new avenues 

for the development of interventions, as well as maximising the effectiveness of 

existing strategies for control. 



 

 

Abstract 

For vector-borne parasites such as malaria, how within- and between-host processes 

interact to shape transmission is poorly understood. In the host, malaria parasites 

replicate asexually but for transmission via mosquitoes to occur, specialized sexual 

stages (gametocytes) must be produced. Once inside the mosquito vector, 

gametocytes immediately differentiate into male and female gametes, and motile 

male gametes must swim through the hostile environment of the bloodmeal to find 

and fertilise female gametes.  Despite the central role that gametocytes play in 

disease transmission, explanations of why parasites adjust gametocyte production in 

response to in-host factors remain controversial. Furthermore, surprisingly little is 

known about the mating behaviour of malaria parasites once inside the mosquito. 

Developing drugs and/or vaccines that prevent transmission by disrupting sexual 

stages are major goals of biomedicine, but understanding variation in gametocyte 

investment and male gamete behaviour is key to the success of any intervention.   

First, I propose that the evolutionary theory developed to explain variation in 

reproductive effort in multicellular organisms provides a framework to understand 

gametocyte investment strategies in malaria parasites. I then demonstrate that 

parasites appear to change their reproductive strategies in response to environmental 

cues and in a manner consistent with our predictions. Next, I show how digital 

holographic microscopy can be used to characterise the morphology and motility of 

male gametes. I then provide evidence for non-random movement of male gametes 

and that gamete interactions with red blood cells appear to hinder mating success in a 

bloodmeal. Finally, I discuss the variation in gametocyte differentiation and 

fertilisation success when exposed to a number of factors implicated in gametocyte 

activation. The data presented here provides important information on the basic 

biology of malaria parasite reproductive stages and demonstrates considerable 

variation in parasite traits and behaviours in response environmental changes; both in 

the host and in the mosquito vector. 
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1 General Introduction 

1.1 Disease Ecology 

 

The evolutionary ecology of infectious diseases has attracted increasing interest over 

the past 30 years (Williams and Nesse, 1991, Read and Taylor, 2001, Poulin, 2007, 

Harrison, 2007, Stearns and Koella, 2008, Leggett et al., 2014, Lively et al., 2014) 

(figure 1.1). Pathogens (broadly defined as viruses, bacteria and eukaryotic micro- 

and macro parasites) are responsible for huge morbidity and mortality of humans, 

livestock and crops worldwide, and are ubiquitous across a wide range of 

ecosystems. Despite several decades of interventions, evolution has continually 

eroded efforts to control their spread. For example, drug resistance in pathogens and 

insecticide resistance in their vectors threaten to reverse many of the advances 

achieved in the last century (French, 2005, Klein et al., 2012). Therefore, integrating 

evolutionary theory with mechanistic approaches is key to understanding and 

predicting the spread of diseases through populations over space and time (Foster, 

2005, Restif, 2009, Mideo and Reece, 2011). Furthermore, being able to predict how 

virulence and transmission varies according to a range of possible interventions 

could enable an informed choice of the most “evolution-proof” strategy (Williams, 

2010). However, this ambition is precluded by a poor understanding of how 

ecological interactions affect parasite life history traits and behaviour. 
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Figure 1.1. Increasing research effort on the evolution and ecology of 

disease. Taken from (Lively et al., 2014). N: Number of publications per 

year, as revealed by a PubMed advanced search with the term “disease” and 

with either the term “ecolog*” or “evolution*,” where the asterisks indicate the 

inclusion of any alternate endings to the words. 

 

Historically, research has focussed on the mechanistic aspects of within-host traits of 

pathogens (using imaging, cell and molecular biology approaches), but evolutionary 

ecology is increasingly being integrated into the study of within-host traits and 

behaviours (Harrison, 2007, Graham, 2008, Reece et al., 2009) (chapter 2). 

Evolutionary theory can provide a framework for understanding variation in the 

parasite traits that underlie disease virulence and transmission (Paul et al., 2003, 

Poulin, 2007, Reece et al., 2009). So far, this interdisciplinary effort has revealed a 

range of interesting interactions between pathogens and with facets of their within-
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host environment (e.g. resource availability, presence of competitors, host immune 

responses and anti-parasite drugs). These interactions are known to have a significant 

impact on the growth, virulence and transmission of pathogens throughout 

populations (Levin et al., 1999, Read and Taylor, 2001, Lloyd-Smith et al., 2005, 

Harrison, 2007, Graham, 2008, Reece et al., 2009, Matthews, 2011, Lopez et al., 

2011, Mideo and Reece, 2011, Stearns, 2012).  

 

However, two factors that are essential for determining patterns of virulence and 

transmission have been overlooked:  i) the extent of plasticity in these traits and 

behaviours in variable environments and ii) the relevance of between–host 

interactions. Regarding the first point, theoretical approaches have provided a 

predictive framework to understand plasticity in parasite strategies (Alizon and van 

Baalen, 2008, Mideo et al., 2008), but explicit experimental tests of these are lacking. 

In chapters 2 and 3, I address this issue and test the effect of environmental 

manipulation on parasite reproductive strategies. Regarding point ii), between host 

factors are many and varied; they include the availability of susceptible hosts, and 

the mode (i.e. horizontal vs vertical) and route (e.g. vector vs direct) of transmission 

(Poulin, 2007, Boots and Mealor, 2007).  Many medically important parasites are 

transmitted between their hosts via vectors (e.g., Plasmodium (Baton and Ranford-

Cartwright, 2005), Trypanosoma (Krafsur, 2009), Leishmania (Killick-Kendrick, 

1990), Brugia, Onchocerca, and Schistosoma (Matthews, 2011)). I address the lack 

of data on within-vector ecology by characterising the biology and behaviour of 

sexual reproduction within the vector (chapters 4 and 5). Detailed introductions are 
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provided for each chapter, and the evolutionary concepts underlying my research 

questions and the relevant biology of my study system are outlined below.  

 

 

1.2 Life history theory and phenotypic plasticity  

 

Life history theory provides a framework to explain the complex traits of growth, 

reproduction and survival observed for a variety of different taxa (Stearns, 1992). 

Natural selection acts to maximise the fitness of an organism through the expression 

of advantageous traits. However, due to the numerous costs and constraints that 

organisms face, there are limits to the possible combination of traits that can be 

expressed (Roff, 1992, Stearns, 1992). This is in large part thought to be due to 

resource allocation trade-offs: where resources are invested in one trait at the 

expense of other traits. The high cost of investing resources into reproduction at the 

expense of growth (and vice-versa) is the driving force behind one of the most 

commonly studied trade-offs: between survival and reproduction (Williams, 1966, 

Stearns, 1992).   

 

Further complications in adopting the best life-history strategy for a given organism 

arise because the optimal solution is most likely to be dependent on the external 

environment, and how this varies, both temporally and spatially. Phenotypic 

plasticity: a process where an organism can produce a range of phenotypic responses 

under different environmental conditions (i.e., genotypes alter their phenotype in 

response to environmental cues) is central to understanding the impact of the 
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environment on trait evolution (Scheiner, 1993). In its broadest form, plasticity 

ranges from aspects of physiology (including homeostasis and consequences of 

developmental constraints) (Pigliucci et al., 2006), to quantifiable changes in 

behaviours, morphologies and phenotypes. Plastic changes can have a wide range of 

effects on fitness; they can be adaptive, maladaptive or neutral (Pigliucci, 2001, 

Ghalambor et al., 2007). Whilst there are plenty of examples where plasticity appears 

to be non-adaptive (with the majority of studies in plants; reviewed in Ghalambor et 

al. (2007), this thesis and the discussion herein refers to adaptive plasticity; i.e., a 

mechanism that enables an organism to maintain fitness across a range of 

environments (Pigliucci, 2001). Plasticity can facilitate the evolution of fixed traits 

by enabling organisms to quickly adopt the best phenotype in a novel environment 

(Pigliucci, 2001, Schlichting and Pigliucci, 1998). This can either occur via the 

assimilation of a plastic trait, or through promoting the survival of an organism, 

allowing more time for the evolution of a novel trait (Chevin et al., 2010). A simple 

example of adaptive phenotypic plasticity is when plants avoid shade by elongating 

their stems in the direction of light (Schmitt et al., 2003). Furthermore, when exposed 

to predator cues, Daphnia pulex (a freshwater crustacean) produces morphological 

defences (neck spines) (Tollrian, 1995). Adaptive phenotypic plasticity has also been 

observed in mammals; for example red deer (Cervus elaphus) adjust their sex ratio 

according to population density (Kruuk et al., 1999). 

 

Whilst phenotypic plasticity allows genotypes to rapidly respond to environmental 

changes, it is also thought to be subject to various costs and constraints (McNamara 

and Houston, 2009, Reece et al., 2009). For example, the maintenance of 
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mechanisms required to detect and respond to environmental change are predicted to 

be energetically costly, exemplified by the negative correlation between plasticity in 

the shell morphology of the freshwater snail and its growth rate (deWitt et al., 1998). 

However, broader evidence of the costs of plasticity remains scarce (Auld et al., 

2009). Furthermore, genetic variation for life history traits is commonly observed, 

and differences between genotypes can interact with plastic responses to 

environmental factors in complex ways (gene- by-environment interactions (G x E)) 

(Stearns and Koella, 2008). This can generate considerable variation in the 

phenotypic range of different genotypes and thus, shape evolutionary outcomes. 

Figure 1.2 demonstrates the reaction norm concept, which provides a framework to 

understand plasticity and the evolutionary consequences of G x E interactions. 

Whilst the majority of data and theory on phenotypic plasticity is centred on 

multicellular organisms, investigating plasticity in parasite phenotypes has largely 

been neglected. However, parasites share many of the same traits, behaviours, trade-

offs and selective forces of multicellular organisms, but how much this matters for 

survival and disease transmission remains unknown. Understanding when plasticity 

will facilitate or constrain evolutionary change could have important implications for 

disease control (chapter 2, Carter et al., 2013).  
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Figure 1.2 Demonstration of the reaction norm concept and phenotypic 

plasticity. Red and blue lines represent different genotypes. A: How the 

expected phenotype of a given genotype changes as a function of 

environmental change (Scheiner, 1993). This is used when modelling 

plasticity for continuous environmental variables. B: Examples of the 

evolutionary consequences of when there is genetic variation for reaction 

norms. “E1” and “E2” represent two distinct environments. In B2, the shift 

from environment 1 (E1) to environment 2 (E2) facilitates evolution because 

the phenotypes of the two genotypes diverge, and selection will act to favour 

the most appropriate (fittest). In B3, the shift between environments results in 

the phenotypes of the two genotypes converging and therefore the genetic 

variation is masked from selection (Leggett et al., 2014).  

 

1.3 Parasites as a model system for testing life history theories 

Whilst it is important to understand variation in the traits, behaviours and trade-offs 

of malaria parasites in their own right - as a deadly parasite - parasites also provide a 

useful model system for testing the predictions of life history theory. Despite being a 

central concept to evolutionary ecology, experimental manipulations to explicitly test 
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the fitness consequences of reproductive investment decisions are scarce, and theory 

is ahead of the data (but see (Creighton et al., 2009, Cotter et al., 2011)). In 

multicellular organisms, measuring reproductive strategies is challenging and 

consistently confounded by environmental variation, numerous aspects of 

reproductive investment (e.g. parental care) and age related senescence or 

improvement due to experience (Clutton-Brock, 1984). Parasites offer a simple 

model system to experimentally test evolutionary theories, as they lack most of these 

confounding effects (Poulin, 2007). Furthermore, parasites have well-defined and 

quantifiable traits, which provide an ideal basis for testing the underlying 

evolutionary theory as well as the mechanisms underpinning both reproductive 

decisions (addressed in chapters 2 and 3) and mating behaviour (addressed in 

chapters 4 and 5).  

 

Rodent malaria (Plasmodium) parasites provide a particularly good model system in 

which some of these questions can be investigated. The physiology and immune 

system of rodents is very well characterised, malaria parasites can be genetically 

modified and there are numerous imaging, cellular, molecular, and immunological 

tools and techniques available to test and manipulate parasite traits and in-host 

environmental variables (Babiker et al., 2008, Wykes and Good, 2009, Guttery et al., 

2012, Menard et al., 2013). Results from studying malaria parasite traits can also be 

applied more broadly to other parasites that reproduce sexually (e.g., trypanosomes) 

(Pollitt et al., 2011a).  
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1.3.1 Lifecycle of Plasmodium  

 

The complex two-host lifecycle of Plasmodium consists of asexual proliferation in 

the vertebrate host and sexual reproduction in the dipteran mosquito vector (figure 

1.3). Infected female Anopheles mosquitoes inject Plasmodium sporozoites into the 

skin of the host, from which they enter the bloodstream, travel to the liver and invade 

hepatocytes (Menard et al., 2013). Sporozoites multiply and differentiate into 

thousands of haploid merozoites which re-enter the bloodstream and initiate asexual 

replication within red blood cells (RBCs) (although some species lay dormant in the 

liver for months before they re-enter the bloodstream) (Markus, 2012).   

 

Within every asexual cycle, a small proportion of asexual parasites commit to 

developing into developmentally arrested male and female sexual precursor cells, 

termed gametocytes, which circulate in the peripheral bloodstream of the vertebrate 

host. When female mosquitoes feed on the host (generally at dawn and dusk) they 

ingest gametocytes (along with asexual stage parasites and other components of the 

host infected blood) (Baton and Ranford-Cartwright, 2005). Whilst the ‘Hawking 

hypothesis’ suggests that reproductive effort is coordinated so that gametocytes reach 

maximum infectiousness when mosquitoes feed  (Hawking, 1966), at present, there 

is a lack of data to directly link circadian rhythms in gametocyte and vector biology 

(Mideo et al 2012). Moreover, differences in cell cycle duration (from 24-72 hours) 

and gametocyte development times (2 – 14 days) between species (for the rodent 

malaria parasite P. berghei and the human malaria parasite P. falciparum 

respectively) could have a significant impact on the patterns of transmission 
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observed (Mideo et al 2012), which is further discussed in chapter 2. Immediately 

upon uptake by the mosquito, gametocytes are triggered to undergo gametogenesis 

(gamete differentiation); producing haploid gametes (Baton and Ranford-Cartwright, 

2005). Female gametogenesis results in a single female gamete emerging from the 

residual gametocyte-infected RBC, but male gametocytes undergo a process termed 

exflagellation; producing up to eight flagellated and motile male gametes 

(microgametes) from each gametocyte (MacCallum, 1897). Microgametes must 

locate and fertilise the non-motile female gametes within one hour (Carter and 

Nijhout, 1977, Sinden et al., 2010), forming diploid zygotes. Over the next 18-20 

hours, each fertilised zygote differentiates into a motile ookinete, which traverses the 

midgut wall and transforms into an oocyst. Within each oocyst, the parasites 

replicate asexually to produce haploid sporozoites, which are released into the 

haemocoel when the oocyst ruptures. Sporozoites then migrate to the salivary glands 

and are injected into a new host during the next blood meal the mosquito takes 

(Baton and Ranford-Cartwright, 2005). 
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Figure 1.3 The lifecycle of Plasmodium parasites consists of asexual 

replication in the host (upper panel) and sexual reproduction (followed by 

asexual replication) in the mosquito vector (lower panel). When taking a 

blood meal from an infected host, mosquitoes ingest gametocytes. After 

sexual reproduction in the midgut, oocysts form and asexual replication 

results in large numbers of sporozoites which are injected into the skin of the 

next host the mosquito bites.  

 

1.4 Ecology of Plasmodium reproductive decisions 

Whilst life history trade-offs are generally resolved at the level of single organisms, 

when applied to Plasmodium infection dynamics, a single genotype within an 

infection is analogous to a whole organism, as the target of natural selection 

(Gardner and Grafen, 2009). As such, the in-host asexual replication stages are 

representative of growth and survival, whilst the sexual stage gametocytes represent 

reproduction (Reece et al., 2009) (see figure 1.3 for details of the lifecycle). For 

malaria parasites, key trade-offs experienced at every cell cycle include the division 
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of resources between 1) the production of asexually replicating stages (required for 

in-host survival) vs. sexual stage gametocytes (required for between-host 

transmission), termed reproductive effort; and 2) the production of male vs. female 

gametocytes. Together, these two trade-offs are referred to as “reproductive 

strategies”. Malaria parasites have been shown to plastically alter their reproductive 

strategies in response to variation in resource availability, (Drakeley et al., 1999, 

Paul et al., 2000, Reece et al., 2005, Robert et al., 2003), competition (Dyer and Day, 

2003, Wargo et al., 2007a, Reece et al., 2008, Pollitt et al., 2011b),  transmission 

blocking immune factors that affect fertility (Smalley et al., 1981, Paul et al., 1999, 

Buckling and Read, 2001, Reece et al., 2008), and drugs (Buckling et al., 1997, 

Buckling et al., 1999a, Wargo et al., 2007b, Peatey et al., 2009, Reece et al., 2010, 

Sowunmi et al., 2009, Peatey et al., 2013). It is important to understand the reasons 

underlying this plasticity, because reproductive strategies shape parasite survival 

within the host (and therefore virulence) and transmission to subsequent hosts (Pollitt 

et al., 2011a, Mideo and Reece, 2011, Carter et al., 2013) (chapter 2). Being able to 

predict whether phenotypic plasticity will facilitate or constrain evolutionary change 

has key implications for the long term efficacy of interventions (Mideo and Reece, 

2011, Reece et al., 2009). In chapter 2, I explain the evolutionary concepts behind the 

effect of environmental “stress” on plasticity in reproductive strategies, summarise 

the current data and discuss the need for integration between mechanistic approaches 

and evolutionary ecology (Carter et al., 2013) (chapter 2). Whilst most studies have 

focused on either the number or sex ratio of gametocytes, evolutionary theory 

predicts these traits will be simultaneously optimised (Stearns, 1992). Therefore, the 

data presented in chapter 3 investigates both reproductive strategies. In this chapter, I 
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explore what cues parasites use to detect and respond to environmental changes and 

interpret the resulting variation in gametocyte investment and sex ratio in the context 

of each other (Carter et al., 2014) (chapter 3). 

 

1.5 Sexual reproduction in the vector 

Sexual reproduction within the mosquito is essential for the transmission of 

Plasmodium between hosts: when developmentally arrested Plasmodium 

gametocytes enter the mosquito, gametogenesis (the formation of haploid micro- 

(male) and macro- (female) gametocytes) rapidly ensues. Gametogenesis is common 

to a number of Apicomplexan parasites such as Eimeria, Toxoplasma and 

Plasmodium (Walker et al., 2013). Microgametogenesis involves repeated nuclear 

division followed by the release of microgametes (flagella) which then fertilise 

female macrogametes (Walker et al., 2013). Whilst there is a wealth of ultra-

structural knowledge for all three organisms, details of the trigger underlying 

gametogenesis and subsequent mating is lacking for Eimeria and Toxoplasma, but 

some lessons can be drawn from Plasmodium because a number of molecular 

mechanisms have been implicated. The expanding knowledge of gene function in 

malaria gametes (van Dijk et al., 2001, Liu et al., 2008, De Koning-Ward et al., 

2008, Ponzi et al., 2009, Straschil et al., 2010, Guttery et al., 2012, Guttery et al., 

2014, Eksi et al., 2006, van Dijk et al., 2010) provides an ideal foundation for linking 

behaviour to mechanism. In addition, early evidence suggests that trypanosomes 

undergo meiosis and some form of sexual reproduction (mediated by flagella) 

(Peacock et al., 2014), and so are likely to face many of the same selection pressures 



 

19 

as malaria parasites.  However, knowledge of the basic biology and behaviour of 

microgametes, as well as variation in fertilisation success when exposed to variable 

environments is significantly lacking.  

 

Surprisingly little is known about how malaria parasites respond to constraints they 

face during mating. However, with the apparently highly hostile and variable 

environment (variable RBC densities, immune factors and temperatures) they are 

exposed to in the mosquito midgut, and their evident success in transmission 

(Bousema and Drakeley, 2011, Baton and Ranford-Cartwright, 2005), it is likely that 

parasites have evolved sophisticated strategies to facilitate fertilisation and ensure 

subsequent ookinete development. Before it is possible to explicitly test for parasite 

strategies, the fundamental characteristics of parasite biology and behaviour must 

first be quantified.  The ambition of chapters 4 and 5 was to characterise some of the 

basic features of mating. For example: How do male malaria parasites 

(microgametes) swim (what is their speed, length, wavelength and swimming 

direction)? What role do RBCs have for microgamete motility (i.e., do RBCs help or 

hinder fertilisation success)? And, do microgametes follow non-random paths within 

the bloodmeal (i.e., are microgametes attracted to female gametes) (chapter 4)? 

Finally, what factors are important for triggering gametogenesis, how do these affect 

subsequent ookinete maturation and is there genetic variation in these parameters 

(chapter 5)?   
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Vector-parasite interactions are key determinants of parasite fitness, and 

understanding the details of this process is timely due to the current focus on 

developing transmission-blocking interventions (Eksi et al., 2006, Ponzi et al., 2009, 

van Dijk et al., 2010, Guttery et al., 2012). Recent studies suggesting that the 

accelerated evolution of male-biased genes (compared to universally expressed or 

female specific- genes), have generated concern that male gametocyte / 

microgamete- targeted interventions could be particularly vulnerable to parasite 

counter-evolution (Khan et al., 2013). This emphasises the need for an improved 

understanding of the basic biology and behaviour of mating within the vector, in 

order to make interventions as sustainable and as robust to evolution as possible 

(Williams, 2010).  

 

1.6 Bridging Scales: malaria reproductive strategies 

To fully understand and predict the epidemiological consequences of variation in 

parasite traits and behaviours, linking the within-host and within-vector scales is 

essential (Alizon and van Baalen, 2008, Mideo and Day, 2008). Clearly, in-host 

ecology is interesting and important for the evolution of parasite virulence and drug 

resistance (Paul et al., 2003, Mideo and Reece, 2011). Presumably the ecology of 

parasite interactions within the vector are equally (if not more-so) important for 

transmission, and by effecting epidemiology, they can feed back into within-host 

processes and have important implications for disease control. In addition, vector 

control programmes select for vector evolution (Gatton et al., 2013), but how this 

affects parasite evolution remains unclear. Furthermore, with climate change 

inducing host shifts (Bayoh et al., 2010, Sternberg and Thomas, 2014), unless the 
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range of phenotypic plasticity of the parasite, and the specific trade-offs the parasites 

face are quantified, it is impossible to predict how changing vector populations could 

affect parasite evolution and the spread of disease. In order to fully appreciate the 

epidemiological impact of variation in traits, the relative importance of host- and 

vector- derived interactions on parasite behaviour, and how these vary over the 

course of an infection and between genotypes, must be carefully considered (Poulin, 

2007, Matthews, 2011, Mideo and Reece, 2011). 

 

1.7 Thesis outline and aims 

Despite the importance of variation in parasite life history traits for understanding 

their evolution, proximate and ultimate explanations for this variation remain poorly 

understood. The ambitions of this thesis are to integrate evolutionary ecology, 

molecular and cellular biology, and biophysics to develop a greater understanding of 

the transmission of disease. Specifically, this thesis has furthered our understanding 

of the evolutionary ecology of reproductive strategies of malaria parasites, through 

the following aims: 

i. Examine why parasites adjust investment in gametocytes according to the 

impact of changing conditions on their in-host survival, and outline the 

experiments required to test whether plasticity in gametocyte investment 

enables parasites to maintain fitness in a variable environment (chapter 2). 

ii. Identify what factors parasites use to detect environmental changes and 

make appropriate decisions about investment into gametocytes and their 

sex ratio (chapter 3). 
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iii. Quantify the swimming dynamics, mating success in variable 

environments, and directionality of male malaria gametes (chapter 4).  

iv.  Investigate variation in gametocyte differentiation and the mating success 

of parasites when exposed to variable gametocyte activating factors 

(chapter 5). 
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2 Stress and sex in malaria parasites. Why does commitment vary? 

This chapter is published as:  

Carter LM, Kafsack BFC, Llinás M, Mideo N, Pollitt LC, Reece SE (2013) Stress 

and sex in malaria parasites: Why does commitment vary? Evolution, Medicine, and 

Public Health, 2013: 135–147, doi:10.1093/emph/eot011. 

 

2.1 Abstract 

For vector-borne parasites such as malaria, how within- and between-host processes 

interact to shape transmission is poorly understood. In the host, malaria parasites 

replicate asexually but for transmission to occur, specialized sexual stages 

(gametocytes) must be produced. Despite the central role that gametocytes play in 

disease transmission, explanations of why parasites adjust gametocyte production in 

response to in-host factors remain controversial. We propose that evolutionary theory 

developed to explain variation in reproductive effort in multicellular organisms, 

provides a framework to understand gametocyte investment strategies. We examine 

why parasites adjust investment in gametocytes according to the impact of changing 

conditions on their in-host survival. We then outline experiments required to 

determine whether plasticity in gametocyte investment enables parasites to maintain 

fitness in a variable environment. Gametocytes are a target for anti-malarial 

transmission-blocking interventions, so understanding plasticity in investment is 

central to maximizing the success of control measures in the face of parasite 

evolution. 
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2.2 Introduction 

Plasmodium spp. (malaria parasites) and other Apicomplexans are some of the most 

serious pathogens of humans, livestock, and wildlife (Garnham, 1966). Cycles of 

asexual replication inside host red blood cells (RBCs), lasting from 24-72 hours 

(Mideo et al., 2013), enable parasites to establish and maintain infections. To 

transmit to new hosts, every cell cycle a proportion of parasites develop into 

specialized sexual stages called gametocytes, which do not replicate in the host, but 

are infectious to the mosquito vector (unlike asexual stages). When taken up by the 

vector, male and female gametocytes differentiate into gametes and mate. The 

resulting offspring infect the vector and eventually produce stages infective to new 

hosts (Baton and Ranford-Cartwright, 2005).  

 

It is well known that the production of gametocytes varies during infections and 

across hosts (Buckling et al., 1997, Buckling et al., 1999b, Buckling et al., 1999a, 

Pollitt et al., 2011b). However, the factors that induce commitment to produce 

gametocytes, and why parasites respond to these factors, are long-standing questions 

(Taylor and Read, 1997, Day et al., 1998, Dixon et al., 2008, Babiker et al., 2008). 

This information is central to understanding severity and transmission of disease, for 

predicting how disease control strategies will affect infectiousness (Mideo and 

Reece, 2011, Bousema and Drakeley, 2011, Churcher et al., 2010), and may also 

reveal novel ways to target parasites.  
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Here, we propose that malaria parasites strategically adjust investment into 

gametocytes (hereafter, the conversion rate) in response to the changeable conditions 

experienced during infections and that plasticity in the conversion rate enables 

parasites to optimise their survival and transmission during infections. Our 

conceptual model stems from the integration of diverse experimental data into an 

ecological and evolutionary framework, thereby making the predictions of our model 

and its underlying assumptions explicit and testable. While we focus on malaria 

parasites, the concepts and approach we outline can be applied more broadly to 

species for which in-host replication and between-host transmission are achieved by 

different specialised stages. 

 

2.3 Conversion rate: evolutionary context 

Parasites experience rapid and extensive variation in their in-host environment (e.g. 

in resource availability, competition with other genotypes and species, immune 

responses, and drug treatment) throughout their infections and while occupying 

different hosts and vectors. There is mounting evidence that traits underpinning in-

host replication and between-host transmission (spanning from immune evasion traits 

(Lythgoe et al., 2007, Scherf et al., 2008) to investment in transmissible forms 

(Buckling et al., 1997, Reece et al., 2008, MacGregor et al., 2011)) are adjusted by 

parasites during infections. This flexibility in traits is called “phenotypic plasticity” 

defined as the ability of a genotype to produce different phenotypes in response to 

environmental change (Scheiner, 1993, Pigliucci, 2001). Phenotypic plasticity is an 

important solution to the challenges of life in a changing environment because it 
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enables organisms to maintain fitness by altering their phenotype, through 

mechanisms such as differential gene expression, to match their circumstances 

(Schlichting and Smith, 2002). 

 

Every cell cycle malaria parasites face a resource allocation trade-off between how 

much to invest in asexual stages that are required for in-host survival and in sexual 

stages that are essential for between-host transmission (Koella and Antia, 1995, 

Reece et al., 2009). This is analogous to the trade-off between survival and 

reproduction faced by all sexually reproducing organisms (Stearns, 1992, Roff, 

1992). Because reproduction is costly, phenotypic plasticity in the conversion rate 

influences two key fitness components: in host survival and between host 

transmission (Reece et al., 2009). High conversion early in infections increases the 

potential for transmission, but this strategy risks insufficient investment in asexual 

stages to maintain the infection within the host, resulting in a short duration for 

transmission. Conversely, excessive investment in asexual parasite replication 

reduces the rate of transmission at any given time, but this may be compensated for 

by longer infection durations and continued opportunities for transmission (Reece et 

al., 2009, Klein et al., 2012).  

 

The number of gametocytes produced during infections is generally low (Taylor and 

Read, 1997) and it has been suggested that high densities of asexual stages are 

needed to shield gametocytes from transmission blocking immune responses 

(McKenzie and Bossert, 1998). However, this hypothesis does not explain why 
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conversion rates vary during infections, between conspecific genotypes, and across 

species (Reece et al., 2005, Reece et al., 2010, Pollitt et al., 2011b) (figure 2.1).  The 

conversion rate is defined as the proportion of asexual stage parasites that commit to 

producing gametocytes in subsequent cell cycles (box 2.1), and is called 

“reproductive effort” in evolutionary biology. Therefore the conversion rate is not 

synonymous with the density or prevalence of gametocytes; variation in gametocyte 

densities can be generated by the same level of investment from different numbers of 

asexual stages (Buckling et al., 1999a).  

 

In multicellular organisms, reproductive effort decisions are based on multiple 

extrinsic and intrinsic cues, mortality risk, and how these factors vary through an 

individual’s lifetime (Williams, 1966, Stearns, 1992, Roff, 1992, Fischer et al., 2009, 

McNamara et al., 2009). Evolutionary theory predicts organisms should invest less in 

reproduction as they age because deterioration in their physiological condition 

(referred to as “state”) means that more resources need to be allocated to 

maintenance to ensure continued survival (Williams, 1966, Fischer et al., 2009, 

McNamara et al., 2009). However, when facing an irrecoverable decline in state, or 

other fatal circumstances, organisms should make a terminal investment to maximise 

short-term reproduction (Williams, 1966, Creighton et al., 2009, Cotter et al., 2011).   
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Figure 2.1 Plasmodium conversion rates are variable.  

The conversion rate (±SEM) represents the proportion of a given cohort of 

asexual parasites that differentiate into sexual stage gametocytes. Variation 

in conversion is observed across species and during infections/culture (A). 

Note: conversion is calculated differently for rodent malaria parasites (P. 

chabaudi, P. yoelii, P. vinckei and P. berghei, in vivo) and for P. falciparum 

(in vitro) (see box 2.1). Different con-specific genotypes of P. chabaudi, in the 

same experiment, exhibit different patterns for conversion during infections 

(B). P. chabaudi reduces conversion when experimentally exposed to in-host 

competition (C). The conversion rates of genotype AJ are illustrated; during a 

single genotype infection (alone), and the mean conversion when in 

competition with either genotypes ER, AS, or both together (in competition). 

The reduction in conversion observed when drug sensitive P. falciparum 

isolates are exposed in vitro to antimalarial drugs or control conditions (D) 

(Pollitt et al., 2011b, Reece et al., 2005, Reece et al., 2010). 

 

 



 

29 

Box 2.1: Calculating conversion rates 

Current protocols for in vitro studies of P. falciparum calculate the conversion rate on day t as the number of stage II gametocytes observed 

in 10000 RBCs on day t + 3 (the earliest time point when P. falciparum gametocytes are distinguishable from asexual blood stages) divided 

by the number of ring-stage asexual parasites observed in 10000 RBCs on day t (Carter and Miller, 1979).   

For P. chabaudi, conversion is calculated from in vivo measurements according to (Buckling et al., 1999a). The description of the 

biological process underlying the model in (Buckling et al., 1999a) overcomes challenges posed by hard-to-quantify parameters (i.e., 

parasite death rates in the bloodstream and schizont burst sizes) and takes into account the maturation times of gametocytes and asexual 

blood stages (48 and 24 hours respectively, for rodent parasites). Although the mathematical formulation assumes gametocytes are counted 

24 hours into development, current molecular assays count gametocytes of an unknown age (but are likely to be between 24-48 hours old). 

Ideally we need to know the schedule of development and the precise point at which gametocytes are assayed, since these will determine 

the exact form of the conversion rate equation. For example, if markers in mature (48h old) gametocytes are used, then conversion rate, 

ε, should be quantified as: 

 

 

 

 

 

Where Ai and Gi are asexual and gametocyte densities on day i.  
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Box 2.1 Continued 

Whilst these tools are easy to implement, the assumptions underpinning them are key to making accurate estimates of conversion rates. 

These assumptions, and their caveats, include: 

1. The probability of asexual parasites producing gametocytes is constant over the period between gametocyte production and 

detection. Given the expectation of plasticity in conversion, whereby a different proportion of asexual parasites can commit for every 

cell cycle, this assumption may often be hard to fulfil.  

2. Both in vivo and in vitro approaches assume that the death rate of asexual parasites and gametocytes is equal. Whilst in vitro 

culture conditions do not have the problem of sequestration (disappearance from the circulation) or immune factors that could 

exacerbate differential mortality rates between lifecycle stages (Taylor and Read, 1997), for in vivo assays these factors could confound 

conversion estimates (Mideo and Day, 2008). Furthermore, conversion rates can be overestimated if the death rate for asexual parasites 

is higher than for gametocytes (which could well be the case during drug treatment (Reece et al., 2010), or underestimated if early stage 

gametocytes are mistakenly identified as asexual stages. It is possible to develop mathematical models and formulate predictions for 

how different survival rates need to be if they are the sole driver of observed patterns in conversion rates. For example for the in vivo P. 

chabaudi data in (Pollitt et al., 2011b), we find that the difference in survival rates between asexual parasites and gametocytes must 

vary over the course of infections (e.g., immunity sometimes focuses efficiently on killing gametocytes while at other times survival 

rates across parasite stages are equal) and must vary considerably in different kinds of infection (N Mideo, unpublished work). In 

particular, to explain the difference in patterns of conversion observed in figure 2.1C, survival rates of gametocytes (relative to asexual 

parasites) in mixed infections must be several orders of magnitude lower than in single infections. As yet, there is no known mechanism 

that could underlie such drastically different patterns of survival between parasite stages, during and across infections. Therefore we 

propose that differential survival is unlikely to be the sole cause of variation in patterns of conversion rates. However, developing a 

better understanding of immune responses and subsequent parasite death rates remains an important goal.  

In the literature, there are considerable discrepancies in how conversion rates for P. falciparum have been examined; some studies measure 

gametocyte density in circulation and others present gametocyte prevalence (reviewed in (Mideo and Reece, 2011)). This is,  
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in part, due to the difficulties in calculating conversion rates for natural P. falciparum infections since repeated samples – at specific time 

points – are required to assay the number of asexual parasites in a cohort and the number of gametocytes they produce.  

Basing inference simply on gametocyte density can be problematic: for example, observations of elevated gametocyte densities post drug 

treatment could be due to the release of sequestered gametocytes and/or an increase in conversion rate (Taylor and Read, 1997). Data on 

the timing of gametocytes appearing in the circulation can resolve this issue, but again, requires repeated sampling at specific time points. 

While there are important ethical and logistical considerations when studying natural infections of humans, monitoring infections, with 

measurements of conversion and in-host variables (e.g. anaemia and genetic diversity) would be extremely useful.  

To address the problems outlined in points 1 and 2, ideally, conversion rates for rodent malaria parasites in vivo could be calculated in the 

same way as is now possible for in vitro cultures of P. falciparum (using GFP–tagged molecular markers of sexually committed schizonts 

and flow cytometry to sort fluorescent parasites (Reininger et al., 2012)). However, despite the issues raised, measuring conversion rate 

remains a more desirable approach than simply analysing gametocyte density or prevalence, because changes in the density of gametocytes 

can be generated from cohorts that simply differ in asexual parasite number, but invest in the same relative number of gametocytes.  
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When translating this to malaria parasites, each genotype within a mixed infection is 

the target of selection and should behave as a multicellular organism (Gardner and 

Grafen, 2009).  The density and/or proliferation rate of parasites is analogous to the 

“state” of multicellular organisms. During infections, numerous factors, such as 

competition with unrelated genotypes, other species, drug treatment, immune 

responses, RBC resource availability, and host nutritional status can all change 

dramatically and impact upon parasite proliferation in the host. Thus, in-host 

environmental factors that negatively affect proliferation can be considered as 

“stressors” which impact on the “state” of parasites. 



 

33 

 

2.4 Stress induced sex?  

Human (P. falciparum) and rodent (P. chabaudi) malaria parasites elevate 

gametocyte densities in response to high doses of antimalarial drugs (Buckling et al., 

1997, Buckling et al., 1999b, Buckling et al., 1999a Peatey et al., 2009) and an 

increase in young RBCs (reticulocytes) (Trager et al., 1999, Reece et al., 2010). 

However, care must be taken when making comparisons as there are discrepancies 

between the approaches used to estimate conversion rates in different studies (box 

2.1). Increasing conversion has been interpreted as a strategy parasites adopt when 

they experience adverse conditions, enabling them to maximise transmission before 

the infection is cleared or the host dies (Buckling et al., 1997), a so-called “terminal 

investment” (Williams, 1966). Whilst this makes intuitive sense in the case of drug 

treatment, it is not clear whether reticulocytes are, or indicate, adverse conditions. 

 

In contrast, recent experiments (using P. chabaudi rodent malaria parasites in vivo 

(Pollitt et al., 2011b, Wargo et al., 2007b), and human P. falciparum parasites in 

vitro (Reece et al., 2010)) reveal that when exposed to competition with other 

genotypes in the host, RBC resource limitation, or low doses of anti-malarial drugs, 

parasites reduce conversion rates, adopting “reproductive restraint” (figure 2.1). 

Evolutionary theory predicts that reproductive restraint during periods of mild stress 

improves the prospects for in-host survival, and therefore the opportunities for future 

transmission (Mideo and Day, 2008). The experimental data also suggest that 

parasites respond to the presence of the extrinsic (environmental factors) as well as to 
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their intrinsic effect (impact on state). Moreover, data from monitoring a cohort of 

infected patients collected in the same area from which the parasites used in Reece et 

al. (2010) were isolated provide tentative (in vivo) support for the reproductive 

restraint of P. falciparum in response to drug pressure (Ali et al., 2006).  

 

The contrasting observations of increased and decreased conversion rates in response 

to environmental variation within the host can be reconciled by considering the 

severity of stress imposed on parasites by in-host factors. This is illustrated in figure 

2.2A in which we propose that parasites adjust their conversion rate according to the 

impact of conditions on their proliferation (state) or via directly detecting the 

presence of stressors (figure 2.2B). In low stress conditions (e.g., infections of naïve 

hosts) parasites can afford to invest in gametocytes, and do so at a rate that 

maximizes transmission. When in-host conditions deteriorate due to the appearance 

of stressors (e.g., competition with other genotypes and species, immune responses, 

drug treatment), parasites are constrained to invest in survival, which they achieve by 

reducing the conversion rate (reproductive restraint) (Koella and Antia, 1995, Pollitt 

et al., 2011a). By ensuring survival during periods of stress, parasites benefit from 

the fitness returns of future transmission (i.e., by reducing the rate of transmission in 

the short term, parasites gain a longer duration for transmission). When faced with 

attack from immune responses, investing more in replication may also have the 

added benefit of increasing opportunities for immune evasion via antigenic switching 

(Mackinnon and Marsh, 2010). However, in very poor conditions, when parasites 

experience severe stress and their death rate exceeds the capacity for proliferation or 
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host mortality is imminent, they should make a terminal investment to maximise 

short-term transmission by diverting resources to gametocyte production.  

 

The pattern of conversion we predict in figure 2.2A is qualitatively similar to that 

predicted through a mathematical analysis by Koella and Antia (1995). Their 

analysis relied on strict assumptions: infections are lethal to the host above a 

threshold density and conversion rates are adjusted to limit asexual parasite densities 

to just below this threshold. This work raises the point that all else being equal, 

increasing investment in gametocytes should lead to decreasing virulence of an 

infection; a large body of theory predicts how virulence should depend on in-host 

factors (e.g., (Alizon and van Baalen, 2008), reviewed in (Alizon et al., 2009)). 

However, virulence is only one of many selective forces acting on conversion rates. 

As only a small proportion of modern human malaria infections are fatal, we predict 

parasites more often need to respond to in-host factors that are able to clear 

infections than to imminent host death. The high prevalence of chronic malaria 

infections and the increasing appreciation of their contribution to the infectious 

reservoir (Schneider et al., 2006, Okell et al., 2009, Shekalaghe et al., 2009), also 

suggests that a long duration of transmission matters and producing gametocytes 

“few but often” results in the greatest lifetime fitness. Transmission success is also 

heavily dependent on vector availability. In areas where transmission is seasonal, 

parasites must survive in the host during the dry season. Indeed, parasites have 

evolved diverse strategies to facilitate long-term in-host survival, from immune 

evasion mechanisms (e.g. antigenic switching in P. falciparum (Scherf et al., 2008)); 

to resisting competition (e.g. rodent malaria parasites prevent incoming, competing 
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parasites from establishing an infection via the host iron regulatory hormone 

hepcidin (Portugal et al., 2011)). In the majority of parasite species, the success of 

these strategies depends on maintaining asexual replication at a sufficiently high rate, 

which can be achieved through reproductive restraint. 
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Figure 2.2 Predicted pattern for conversion. A: Under low ‘’stress” (e.g. 

early in infections of naïve hosts) parasites can afford to invest in 

gametocytes, but if conditions deteriorate and proliferation is constrained 

(e.g., when parasites face stressors such as anaemia, competition, or 

immune responses) parasites reduce conversion, employing reproductive 

restraint (blue dashed lines), to ensure in-host survival and the potential for 

future transmission. The form that reproductive restraint takes could follow 

any of the patterns illustrated with the dashed blue lines, depending on a 

number of factors (e.g., the cues parasites respond to, how accurately 

survival probability is determined, and the value of future versus current 

transmission). When parasites face circumstances likely to be fatal (e.g., 

when their death rate exceeds the potential for replication during radical drug 

treatment) or host death is imminent (e.g., due to severe anaemia), parasites 

should make a terminal investment by investing remaining resources into 

gametocytes (red solid line). A switch point and step function between 

reproductive restraint and terminal investment is predicted because investing 

all remaining resources is the best option in a situation likely to be fatal. Note: 

the x-axis does not simply translate to “time since infection” because the 

severity of different stressors fluctuates during infections. B: Data suggest 

that parasites can detect and respond directly to individual stressors and also 

to the effect they have on proliferation rate. Information from the cues 

parasites use must be fed into the molecular pathways that underpin 

commitment to effect a gametocyte investment decision. C: The total 

production of gametocytes (the area under the curve) is equal for both 

genotypes (Churcher et al., 2010). However, genotype A invests heavily into 

transmission early in the infection and therefore achieves higher gametocyte 

densities over a shorter period of time, whereas B has a lower relative 

investment in gametocytes at each time point, but achieves a longer period 

for transmission. The optimal balance between these two extremes is 

predicted to depend on many factors including the frequency of vector blood 

meals, and the chances of the host clearing the infection or dying. 

 

2.5 Testing the theory: complications and challenges 

The model outlined above provides a foundation to explain variable conversion rates 

when considered in light of several key questions:  

(1) Which cues do parasites use to make conversion rate decisions?  
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(2) What are the mechanisms that enable plasticity in conversion rate?  

(3) How finely tuned are conversion rates to the in-host environment and state? 

(4) Does adjusting conversion rates in the manner predicted maximise parasite 

fitness?  

We consider answers to these questions in the following sections and outline the 

challenges required to evaluate these hypotheses in box 2.2. 

 

 

2.5.1 Cues for conversion decisions 

The extent to which parasites respond directly to extrinsic stressors or simply the 

overall effect those stressors have on state is not known. Experimental data suggest 

parasites can respond both to state and environmental factors. For example, 

experiments exposing P. falciparum to low doses of different anti-malarial drugs in 

culture have included both drug sensitive and resistant genotypes but only sensitive 

genotypes respond. This suggests that parasites do not directly detect each drug, but 

instead, respond to the negative effect they have on state (Reece et al., 2010). 

Responding to state seems the more efficient strategy: it avoids the need to integrate 

information about multiple factors, potentially giving opposing information, to 

mount an appropriate response. For example, the level of anaemia induced by P. 

falciparum infections varies depending on the type of antimalarial drug administered 

to patients and whether the parasites are cleared (Ekvall et al., 1998). Because 

anaemia triggers the formation of reticulocytes, the reproductive strategy employed 

in response to the presence of drugs may be complicated by the simultaneous change 
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in RBC age structure. Parasites could be responding directly to the drugs, the 

resulting changes in RBCs, both, or the overall effect that both factors have on the 

“state” of the infection (Trager et al., 1999, Reece et al., 2005).  

 

Whether the best measure of state is parasite density per se or proliferation (i.e. rate 

of change in density) is unclear. Data from several P. chabaudi genotypes (Pollitt et 

al., 2011b, Wargo et al., 2007a) and subsequent modeling (Cameron et al., 2013) 

suggests that parasites alter their conversion rate according to their density in mixed 

genotype infections. Density could be determined by quorum sensing (Diggle et al., 

2007), markers of RBC lysis from burst parasitized cells (Dyer and Day, 2003), 

immune factors, or metabolic measures such as energy balance or reducing power 

(e.g., the expression of genes associated with starvation are associated with increased 

conversion in P. falciparum (Daily et al., 2007)). However, detecting the density of a 

parasite cohort does not necessarily reveal a change in state (i.e., is parasite density 

increasing or decreasing?).  

 

Measuring proliferation requires that parasites integrate information on density over 

consecutive cell cycle cohorts. This information may be more accurate for parasite 

species with synchronous progression through cell cycles than for species with 

asynchronous cycles. In this case, if proliferation rate information is unreliable, 

parasites could respond to individual environmental stress factors; either directly or 

indirectly, by detecting a co-varying factor. For example, parasites may use the onset 

of anaemia as a signal for the imminent arrival of antibodies and the development of 
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immune responses (Paul et al., 1999, Reece et al., 2005). Using proxies in this way 

may also enable parasites to predict future changes in state and respond preemptively 

(Mitchell et al., 2009). Alternatively, parasites could measure their death rate; 

although mechanisms for this are more difficult to envision, they could include 

monitoring the concentration of immune effectors or the release of SOS signals by 

dying parasites similar to bacteria and Chlamydomonas (Swift et al., 2001, 

Moharikar et al., 2006). 

 

2.5.2 Mechanisms underpinning conversion 

The mechanisms regulating the switch to gametocyte production remain elusive. 

Advances in genomics, transcriptomics, proteomics and functional gene targeting 

studies have identified several markers of early gametocyte development in human 

and rodent malaria parasites (reviewed in (Dixon et al., 2008, Babiker et al., 2008,  

Baker, 2010, Liu et al., 2011, Guttery et al., 2012)). These studies provide further 

evidence that commitment occurs at or prior to the schizont stage preceding the 

release of sexually committed merozoites (as has been previously suggested for P. 

falciparum (Bruce et al., 1990, Smith et al., 2000)). Studies using GFP reporters with 

known gametocyte specific promoters also support this developmental pattern 

(reviewed in (Babiker et al., 2008, Baker, 2010, Bousema and Drakeley, 2011, Liu et 

al., 2011)). Recently, the gene P. falciparum gametocyte development 1: pfgdv1has 

been identified as a regulator of gametocyte production (and is associated with an 

increased expression of genes involved in early gametocytogenesis (Pfge genes) 

(Eksi et al., 2012)), and an ApiAP2 DNA binding protein (Campbell et al., 2010) is 

required for gametocyte commitment (Kafsack et al., 2014, Sinha et al., 2014). 
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Whilst identifying molecular markers for commitment is useful for quantifying 

conversion decisions, the evolution of plasticity in conversion rates is shaped by the 

nature of the pathways involved in: detecting cues, processing the information, 

producing a conversion rate phenotype, and the maturation of gametocytes. The 

critical regulators underlying gametocyte conversion may act within a complex 

network of interactions between different modules involved in information 

assimilation and integration to produce a conversion rate phenotype. This level of 

complexity is very challenging to unravel and made more difficult because gene 

function and changes in expression must be assessed in the context of variation in 

both the environment and genetic background of the parasites. Furthermore, it is 

possible that the environmental sensing mechanisms underlying conversion decisions 

may also feed information into other plastic life history decisions such as sex ratio, 

cell cycle arrest and var gene switching (which is responsible for antigenic variation 

to evade host immune responses), as these traits are sensitive to similar 

environmental perturbations (reviewed in (Reece et al., 2009)). As these traits are 

likely to be linked by genetic correlations (e.g. epistasis/pleiotropy: different traits 

are shaped by the same genes), understanding the nature of these interactions is 

central to explaining plasticity in these traits.  

 

2.5.3 Parameterising patterns of conversion 

The shape and switch point(s) of the reaction norm (how a trait varies across an 

environmental gradient) reveal how fine-tuned parasite responses are to 
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environmental variation, including novel stressors. The extent of genetic variation for 

reaction norms is a determinant of the potential for evolution. Reaction norms are 

influenced by many interacting factors. This includes the reliability of cues, costs of 

maintaining detection and response mechanisms, and how much multiple sources of 

information affect the risk of making the wrong decision (West et al., 2006, Rousset 

and Roze, 2007, Kümmerli et al., 2009). Differences in reaction norms across 

species, that have different cell cycle durations, gametocyte development times or 

RBC age preferences, may reflect how differences in costs and constraints on 

plasticity shape parasite strategies. As many different factors can independently and 

simultaneously affect in-host conditions and parasite state, examining the patterns of 

conversion rates resulting from varying factors individually is useful, but providing 

cues in different combinations is required to reveal the full picture. 

 

The reaction norm for conversion is predicted to follow a non-linear pattern, with 

any of the patterns illustrated and at least 1 switch point (reproductive restraint to 

terminal investment; figure 2.2A) (Koella and Antia, 1995, Pollitt et al., 2011a). This 

switch should occur when the death rate exceeds the proliferation rate. We expect 

this point will be influenced by species-specific variation in cell cycle duration and 

gametocyte development time, and by how quickly the environment and/or state 

changes. For example, the cell-cycle duration and gametocyte development time of 

rodent malarias are much shorter than that of P. falciparum. Whilst the cell cycle for 

rodent malaria parasites is 24 hours, and gametocytes reach maturity and are 

infectious to mosquitoes after 24-48 hours, the cell cycle of the human malaria 

parasite P. falciparum is 48 hours and gametocytes require 10-14 days to reach 
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maturity (Day et al., 1998, Babiker et al., 2008). Therefore, if P. falciparum makes a 

terminal investment in advance of host death the host is required to survive at least 

10-14 days until the investment can pay off (five further asexual cycles), but only 48 

hours are required for rodent parasites to produce transmissible gametocytes. As 

such, P. falciparum may ”play it safe” and adopt a more conservative strategy by 

making a terminal investment in response to lower levels of stress than rodent 

parasites, whose gametocytes reach maturity within 48 hours (two asexual cycles). If 

a fast drop in numbers were normally a reliable indicator of a terminal situation, this 

would explain why increased conversion is observed when parasites are exposed to 

high, but subcurative, drug doses (Ali et al., 2006, Reece et al., 2010). Also, if the 

longer cell-cycle duration of P. falciparum compared to rodent malarias makes P. 

falciparum more vulnerable to being cleared by the host, reproductive restraint will 

be induced at lower stress than for rodent parasites.  

 

As shown in figure 2.2C, the characteristics of populations can also influence the 

shape of reaction norms. For example, a “live fast, die young” strategy in which 

parasites readily switch to terminal investment may bring greater pay offs in an 

epidemic setting – where there are plenty of naïve hosts to be transmitted to – than in 

an endemic setting where parasites will be transmitted to hosts containing 

competitors and with active immune responses (Boots and Mealor, 2007). This is 

because genotypes with a high conversion rate risk being unable to establish 

infections in new hosts, due to being outcompeted by resident genotypes (Alizon and 

van Baalen, 2008, Mideo and Day, 2008). Furthermore, parasites in hypoendemic 

areas experience lower levels of in-host competition than those from regions with 
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high genetic diversity (hyperendemic) and so may be less responsive to novel 

stressors such as competition and its effect on state (de Roode et al., 2005).  

 

2.5.4 Linking variable conversion rates to fitness 

A key prediction to test is whether plasticity in conversion rate is adaptive (Kochin et 

al., 2010). The extent to which reproductive restraint provides an in-host survival 

advantage under stress is yet to be determined (e.g., how much does reproductive 

restraint ameliorate the suppression of a genotype in a mixed infection?). At the 

between-host level, how different reproductive strategies map to the rate and 

duration of transmission is hard to assess from data (e.g. gametocyte prevalence) 

available on natural infections. Therefore, whether (under some conditions) 

prolonging the duration for transmission enhances fitness, and whether terminal 

investment benefits parasites in lethal situations through an increase in short-term 

transmission, remain unknown.  

 

Testing the fitness consequences of variation in traits is notoriously difficult, but 

identifying the host and parasite factors that elicit a change in conversion rate and the 

reaction norms generated by different levels of stress will provide the required 

foundations. For example, by providing a cue that elicits reproductive restraint in 

different circumstances (e.g. cues for competition provided in single infections) 

parasites can be induced (“tricked”) into making inappropriate responses for their 

circumstances. The consequences for in-host survival and transmission for parasites 

responding to fake cues could then be quantified, and compared to the performance 
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of parasites exposed to cues that accurately reflect their circumstances (Williams, 

2010). This framework also opens up the possibility of developing interventions that 

co-opt plasticity in conversion rates, by manipulating parasites into making 

suboptimal decisions for their fitness.  

 

The maintenance of mechanisms required to detect and respond to environmental 

change requires resources that could be otherwise allocated to different functions 

(deWitt et al., 1998). Evolutionary theory predicts that if these costs are sufficiently 

high then plasticity is selected against and lost if organisms no longer experience 

variable environments, but evidence for costs of plasticity is scarce (Auld et al., 

2009). Because gametocytes are costly, selection for in-host replication during long-

term culture of P. falciparum and serial passage of P. berghei result in the loss of 

gametocyte production (Janse et al., 1992). However, whether plasticity is actually 

lost is unclear because gametocyte production is sometimes recoverable (Ono et al., 

1993). 
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Box 2.2: Challenges & future directions. Whilst our conceptual model is general, testing it requires examining specific 

circumstances. Here, we outline the main challenges and outstanding questions involved.  

Response to drugs: Data for conversion rates – especially from experiments using drugs – are consistent with the basic prediction of 

parasites adopting reproductive restraint (P. falciparum in vitro (Reece et al., 2010)), or terminal investment (P. chabaudi in vivo (Buckling 

et al., 1997, Pollitt et al., 2011b) and P. falciparum in vitro (Buckling et al., 1999b)), in response to different levels of stress. However, 

further work is required to explicitly test the effects of varying dose within the same experiment - both for rodent models and in vitro for P. 

falciparum. Furthermore, not all drugs appear to induce changes in conversion rate (Buckling et al., 1999a, Peatey et al., 2009). This may 

be because drugs with different modes of action differentially affect the capacity of survivors to detect/respond to changes in state, or the 

capacity of dying parasites to provide signals.  

Response to competition: In-host competition is a stressor with a negative effect on state because the densities of all genotypes 

(individually and when combined) are reduced in mixed infections compared to single infections. This is due to a mixture of competition 

for RBC and the action of immune responses that are not genotype-specific. Competition within the host could occur via a single bite from 

a mosquito infected with multiple genotypes (to a naive host). Alternatively, competition can be established when a mosquito infected with 

one genotype bites an individual already infected with a different genotype. The latter example of sequential infection would be less 

stressful for the resident genotype than the newcomer, even if it the resident genotype is competitively inferior to the incoming genotype 

(Hellriegel, 1992). This is because the incoming genotype will enter a RBC resource depleted environment with cross-reactive immune 

responses already in place (de Roode et al., 2005). In vivo studies of simultaneous in-host competition using P. chabaudi reveal 

reproductive restraint across several genotypes (Wargo et al., 2007a, Pollitt et al., 2011b), but there are no reports of increased conversion 

in response to competition. Adopting reproductive restraint in response to competition might be the only strategy required because in-host 

competition is never stressful enough to merit terminal investment. Alternatively this may be an artefact of experimental design in which 

mixed infections do not result in competitive exclusion, even for the weakest genotypes (Bell et al., 2006, Barclay et al., 2008, Pollitt et al., 

2011b). Experiments using genotypes that vary in competitive ability, inoculated at different starting doses and times during infections are 

needed to test whether in-host competition can induce terminal investment. At the host population level, the consequences of different 

investment strategies would be much harder to test experimentally, but theory demonstrates that there will be feedback from the within- to 



 

47 

between-host levels, and vice versa (e.g., (van Baalen and Sabelis, 1995)). For instance, if mixed infections really do promote reproductive 

restraint, then this should result in less transmission and, consequently, fewer mixed infections. Some of the variation observed in 

conversion rates may be a consequence of this sort of dynamic feedback.   

Response to reticulocytes: Conversion has been observed to both increase and decrease in response to reticulocytes. For some species 

(e.g. P. berghei and P. vivax) that preferentially invade reticulocytes, an increase in conversion upon exposure to reticulocytes is consistent 

with parasites making use of available resources. However, species able to infect a wide range of RBC ages, such as P. falciparum and P. 

chabaudi, also increase conversion in response to reticulocytes (Trager et al., 1999, Reece et al., 2005). This may be because reticulocytes 

are also exploitable resources. However, the lifespan of gametocytes in P. falciparum is at least 5 times that of asexual stages, so the longer 

expected lifespan of reticulocytes may provide a better resource to support the development of gametocytes than mature RBCs. 

Alternatively, for all species, increased reticulocytaemia could indicate severe anaemia leading to imminent host death, and thus, terminal 

investment is the best strategy. For example, the poultry malaria parasite P. gallinaceum appears to be able to determine whether the host 

will survive or die from severe anaemia because it produces different sex ratios in these different circumstances (Paul et al., 1999). 

However, an influx of reticulocytes could also indicate the opposite – that the host is generating an appropriate erythropoietic response and 

will recover from severe anaemia. In this case, reproductive restraint maximises the potential for the parasites to survive.  

When in-host survival does not rely on asexual parasite replication: Parasite species producing dormant stages that persist in the liver 

(hypnozoites) and dendritic cells, such as the human malaria parasites P. vivax and P. ovale (Cogswell, 1992, Wykes et al., 2011), may not 

adopt reproductive restraint in response to stress because survival in the host does not depend on blood stage replication. Terminal 

investment due to imminent clearance will also be unnecessary but may be required to cope with host death. To our knowledge there are no 

data on the conversion rates of P. vivax experiencing different in-host conditions.  However, during natural P. vivax infections, higher 

gametocyte densities are correlated with a mixture of seemingly favourable and unfavourable conditions, including younger 

(immunologically naive) patients, those with higher parasite densities, lower haemoglobin levels, lower platelet counts and an absence of 

fever (reviewed in (Mideo and Reece, 2011)). P. vivax gametocyte densities are also generally much higher compared to those recorded for 

P. falciparum, but each gametocyte circulates for a shorter time; a maximum of 3 days (reviewed in (Mideo and Reece, 2011)). These 

observations suggest that P. vivax may have a non-plastic strategy of a relatively high conversion during the short-lived erythrocytic stage 

of their infections.  
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2.6 Conclusions  

That in-host ecology shapes the dynamics of infections (Read and Taylor, 2001, 

Harrison, 2007) and patterns of transmission is well known (Mideo and Reece, 2011, 

Lloyd-Smith et al., 2005, Matthews, 2011). However, why the density of circulating 

gametocytes in malaria is generally low (Taylor and Read, 1997, Mideo and Day, 

2008) has eluded explanation. We provide an evolutionary theory-based model, 

which predicts that parasites can rarely afford to invest in more because their life 

history spreads reproduction across multiple attempts over a relatively long time.  

 

Given renewed interest in transmission blocking interventions, understanding 

parasite strategies for gametocyte investment is central to making such measures as 

resilient to parasite counter evolution as possible (Mideo and Day, 2008, Alizon and 

van Baalen, 2008). For example, inducing all parasites to commit to gametocytes 

(ideally of the same sex) would reduce the virulence of the infection and could also 

produce an effective transmission-blocking immune response that acts against future 

infections. For example, this could be useful for travellers returning to non-malarious 

countries. Inducing commitment in vitro could also generate material to inform the 

development of other transmission blocking interventions such as vaccines and drugs 

with gametocytocidal action. 

 

Finally, it is often not appreciated that plasticity in parasite life history traits can also 

shape evolutionary responses to environmental change. For example, if plasticity in 

conversion rate acts as a buffering mechanism to minimise the impact of drug 
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treatment, this may weaken selection for other forms of resistance. This may be 

favourable from the perspective of maximising the timespan of efficacy of 

antimalarial drugs. However, such infections will likely be harder to treat than if 

malaria parasites exhibited a higher, fixed, conversion rate.  
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3 Information use and plasticity in the reproductive decisions of 

malaria parasites. 

This chapter is published as: 

Carter LM, Schneider P, Reece SE (2014) Information use and plasticity in the 

reproductive decisions of malaria parasites. Malaria Journal 13:115, 

doi:10.1186/1475-2875-13-115. 

 

3.1 Abstract 

Investment in the production of transmissible stages (gametocytes) and their sex ratio 

are malaria parasite traits that underpin mosquito infectivity and are therefore central 

to epidemiology. Malaria parasites adjust their levels of investment into gametocytes 

and sex ratio in response to changes in the in-host environment (including red blood 

cell resource availability, host immune responses, competition from con-specific 

genotypes in mixed infections, and drug treatment). This plasticity appears to be 

adaptive (strategic) because parasites prioritize investment (in sexual versus asexual 

stages and male versus female stages) in manners predicted to maximize fitness. 

However, the information, or ‘cues’ that parasites use to detect environmental 

changes and make appropriate decisions about investment into gametocytes and their 

sex ratio are unknown.  Here, single genotype Plasmodium chabaudi infections were 

exposed to ‘cue’ treatments consisting of intact or lysed uninfected red blood cells, 

lysed parasitized RBCs of the same clone or an unrelated clone, and an 

unmanipulated control. Infection dynamics (proportion of reticulocytes, red blood 

cell and asexual stage parasite densities) were monitored, and changes in gametocyte 

investment and sex ratio in response to cue treatments, applied either pre- or post-

peak of infection were examined. A significant reduction in gametocyte density was 

observed in response to the presence of lysed parasite material and a borderline 
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significant increase in sex ratio (proportion of male gametocytes) upon exposure to 

lysed red blood cells (both uninfected and infected) was observed. Furthermore, the 

changes in gametocyte density and sex ratio in response to these cues depend on the 

age of infection. Demonstrating that variation in gametocyte investment and sex ratio 

observed during infections are a result of parasite strategies (rather than the footprint 

of host physiology), provides a foundation to investigate the fitness consequences of 

plasticity and explore whether drugs could be developed to trick parasites into 

making suboptimal decisions.  

 

3.2 Introduction  

Malaria parasites proliferate in the blood through cycles of asexual replication, but 

every cell cycle a small proportion of progeny commit to developing into male and 

female gametocytes (which do not replicate in the host) (Smith et al., 2002, Talman 

et al., 2004, Dixon et al., 2008, Liu et al., 2011). This means that, like all sexually 

reproducing organisms, malaria parasites face resource allocation trade-offs between 

survival and reproduction and between producing males and females (Hamilton, 

1967, Charnov, 1982, Stearns, 1992, Roff, 1992). Specifically, every cell cycle 

parasites make decisions about how much to invest in gametocytes (which are 

essential for reproduction and transmission) versus asexuals (which are essential for 

in-host survival) and in males versus females. These decisions are sensitive to 

variation in the in-host environment (Paul et al., 2003, Reece et al., 2009).   

 

Extensive variation in gametocyte investment (also known as the ‘conversion rate’ or 
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‘reproductive effort’) and sex allocation (proportion of male gametocytes) of 

Plasmodium spp. has been observed across different species, strains, and during 

infections (Buckling et al., 1997, Paul et al., 2000, Reece et al., 2005, Eisen and 

Schall, 2000, Reece et al., 2009, Reece et al., 2010, Neal and Schall, 2010, Pollitt et 

al., 2011b). Understanding variation in gametocyte investment and sex ratio 

(collectively referred to as ‘reproductive strategies’) is important because they are 

key fitness-determining traits, shaping survival within hosts and the success of 

transmission to new hosts (Pollitt et al., 2011a, Mideo and Reece, 2011, Carter et al., 

2013, chapter 2). Experiments using rodent malaria parasites in vivo and Plasmodium 

falciparum in vitro suggest that parasites alter investment in gametocytes and their 

sex ratio in response to: changes in red blood cell (RBC) resource availability 

(Drakeley et al., 1999, Trager et al., 1999, Paul et al., 2000, Robert et al., 2003, 

Reece et al., 2005), host derived transmission blocking immune (TBI) responses 

(Reece et al., 2008, Paul et al., 1999, Smalley et al., 1981, Buckling and Read, 2001), 

competition from con-specific genotypes in mixed infections (Dyer and Day, 2003, 

Pollitt et al., 2011b, Reece et al., 2008, Wargo et al., 2007a) and drug treatment 

(Buckling et al., 1999b, Buckling et al., 1999a, Buckling et al., 1997, Wargo et al., 

2007b, Sowunmi et al., 2009, Peatey et al., 2009, Reece et al., 2010, Peatey et al., 

2013). Observational data from natural infections also suggests that P. falciparum 

sex ratios and gametocyte investment differ between single and mixed infections and 

are altered in response to variation in RBC density (Bousema and Drakeley, 2011).  

 

Evolutionary theory offers explanations for why parasites adjust their reproductive 

strategies in response to the changing environmental conditions encountered in the 
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host (Antia et al., 2008, Mideo and Day, 2008, Reece et al., 2009, Kochin et al., 

2010, Mideo and Reece, 2011). For example, parasites increase gametocyte 

investment in response to anaemia, reticulocytes and exposure to sub-lethal anti-

malarial therapy (Trager and Gill, 1992, Buckling et al., 1997, Buckling et al., 1999a, 

Buckling et al., 1999b, Trager et al., 1999, Paul and Brey, 2003, Reece et al., 2005, 

Peatey et al., 2009). This has been interpreted as a strategy of ‘terminal investment’ 

during extreme stress (Williams, 1966): investing heavily in gametocytes maximizes 

transmission potential in a situation likely to be lethal (e g., before the infection is 

cleared or the host dies) (Buckling et al., 1997, Buckling et al., 1999b, Peatey et al., 

2009,). However, recent evolutionary theory predicts that this may be an 

oversimplification and that less severe stress induces parasites to reduce investment, 

as a strategy of ‘reproductive restraint’ (Mideo and Day, 2008). Reproductive 

restraint is predicted to facilitate in-host survival and therefore future transmission 

opportunities (Mideo and Day, 2008). Empirical work supports these predictions, 

revealing that when parasites experience competitive suppression, RBC limitation, 

and low doses of anti-malarial drugs, they reduce gametocyte investment (Wargo et 

al., 2007a, Reece et al., 2010, Pollitt et al., 2011b). The sex allocation decisions of 

parasites are sensitive to many of the same factors as gametocyte investment. For 

example, different sex ratios bring the highest fitness returns in single- versus mixed-

genotype infections (Hamilton, 1967, Read et al., 1992, Godfray and Werren, 1996, 

West et al., 2001, Nee et al., 2002, Reece et al., 2008) and when hosts are mounting 

immune responses that differentially affect male and female gametocytes (Ramiro et 

al., 2011). Experiments with Plasmodium chabaudi reveal that sex ratios are 

precisely allocated according to the number of co-infecting genotypes and their 
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relative representation within a mixed-genotype infection (Reece et al., 2008). 

Therefore, sex ratio data suggest that parasites can determine the genetic diversity of 

their infections and measure the number (or replication rate) of asexual stages 

belonging to their genotype (Reece et al., 2008).  

 

Whilst evolutionary theory can explain why parasites adjust investment into 

gametocytes and their sex ratio, it does not explain how they do so. Whether 

parasites identify and respond to individual factors (e.g., RBC density and age 

structure, the presence of competing parasites and the dose of drugs), or the overall 

impact the environment has on their proliferation rate (i.e., ‘state’) is not known 

(Carter et al., 2013). A further complication is that the in-host environment is 

complex and many factors change simultaneously. For example, both anaemia and 

immunity develop as parasite number increases (Haldar and Mohandas, 2009, Paul et 

al., 1999), competition in mixed infections brings RBC limitation and suppresses 

asexual proliferation (Paul et al., 2003, de Roode et al., 2004, Bell et al., 2006, 

Raberg et al., 2006), and different drugs kill parasites in dose-dependent ways and 

can alter anaemia (Ekvall et al., 1998). For the parasite, more accurate information 

may be obtained from directly measuring individual environmental factors, but 

measuring changes in overall state may be the most efficient strategy, as it does not 

require the assimilation of information from multiple environmental variables that 

could elicit contradictory parasite responses (Carter et al., 2013).  
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The experiments presented here investigate the cues that parasites use to make their 

reproductive decisions by examining whether the gametocyte investment and sex 

ratio of a single clone infection change in response to material (‘cues’) derived from 

uninfected RBCs, RBCs infected with con-generic parasites, and RBCs infected with 

a con-specific genotype. The experiments were designed to build on previous work 

(Reece et al., 2008, Pollitt et al., 2011b) to more specifically test ‘what’ parasites 

sense in their in-host environment. For example, in previous experiments conversion 

rates (Pollitt et al., 2011b) and sex allocation (Reece et al., 2008) were compared in 

single and mixed genotype infections to ask whether parasites respond to in-host 

competition. However, numerous factors vary between single and mixed infections 

(e.g., anaemia, the age structure of RBCs, the concentration and balance of cytokines 

and the density of parasites), in complex ways. This makes it difficult to pinpoint 

exactly which factor(s) parasites are responding to. Furthermore, these changes in the 

in-host environment offer different opportunities and constraints to parasites that 

could be incorrectly interpreted as a parasite response. For example, parasites may 

not respond directly to anaemia, but may appear to do so, because a lack of preferred 

RBCs available for parasites to invade could directly interfere with their replication 

rate. The experiments presented here were designed to minimise the problem of 

simultaneously changing multiple aspects of the in-host environment, with the aim of 

getting closer to identifying the factor(s) which parasites are sensitive to.  
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3.3   Methods 

3.3.1 Hosts and parasites 

The rodent malaria parasite P. chabaudi, genotypes AJ and ER were used (from The 

University of Edinburgh’s malaria reagent repository http://malariaresearch.eu/). 

These wild-type clonal genotypes were originally isolated from areas where mixed 

infections were frequent (Carter, 1978). Male MF1 mice, between ten and 12 weeks 

of age (in-house supplier, The University of Edinburgh), were kept in groups of two 

to five under a 12-hour light/dark cycle, at 21
o
C and provided ad libitum with food 

and water containing 0.05% para-aminobenzoic acid (PABA); a growth factor for 

parasites. Dynamics of the P. chabaudi AJ infections were monitored when exposed 

to treatments consisting of material derived from self, non-self (genotype ER), and 

RBCs (detailed below and in table 3.1). AJ was chosen as the focal genotype, 

because it has been shown to respond to competition from unrelated strains with 

large changes in gametocyte investment and sex ratio (Reece et al., 2008, Pollitt et 

al., 2011b). All procedures were carried out in accordance with the UK Home Office 

regulations (Animals Scientific Procedures Act 1986) and approved by the ethical 

review panel at The University of Edinburgh. 

http://malariaresearch.eu/
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Table 3.1 Summary of cue treatment groups, sample sizes, rationales, 

and classifications.  The analysis involved comparing individual cue 

treatments and comparing treatments grouped in different ways to test 

whether parasites respond to lysed parasite material (P vs. NP) and/or to 

lysed RBC material (L vs NL). N = number of mice that received a particular 

treatment. 

Cue treatment N Rationale Classification 

 

T
re

a
tm

e
n

t 

L
y
s
e
d

 

P
a
ra

s
it

e
s

 

L
y
s
e
d

 

R
B

C
 

Control 5 No-treatment control for the 

stress of handling and injections. 
C NP NL 

Uninfected RBC 5 Control for the stress of handling 

and injecting the host with blood. 
U NP NL 

Uninfected lysed RBC 10 To test for a response to RBC 

debris 
UL NP L 

AJ-infected lysed RBC 10 Compare AJ to UL to test for a 

response to high density of self 
AJ P L 

ER-infected lysed RBC 10 Compare ER to AJ to test for a 

response to non-self 
ER P L 

 

 

3.3.2 Cue treatments 

The experiment consisted of five treatment groups that received different cues 

injected into hosts (table 3.1). The cue treatments, and the acronyms they are 

hereafter referred to as, are: (i) unmanipulated control, ‘C’; (ii) uninfected whole 

RBCs control, ‘U’; (iii) uninfected lysed RBCs, ‘UL’; (iv) AJ-infected lysed RBCs, 

‘AJ’; and, (v) ER-infected lysed RBCs, ‘ER’. Note that these cues do not include the 

administration of additional live self (AJ) or competing (ER) parasites, nor do they 
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directly affect the amount of RBC resources available to the focal AJ parasites. This 

avoids the potential problem of incorrectly interpreting a change in gametocyte 

investment or sex ratio as a parasite strategy when, for example, competition limits 

the availability of RBCs for gametocyte development, or induces immunity that 

increases gametocyte mortality. 

 

The use of lysed P. chabaudi infected RBCs was inspired by recent demonstrations 

that asexual stages contain products that are packaged into ‘exosomes’ or 

‘microvesicles’ to stimulate sexual differentiation in recipient parasites (Regev-

Rudzki et al., 2013, Mantel et al., 2013).  AJ infected RBCs (AJ) and ER infected 

RBCs (ER) were chosen to examine whether parasite products can be used to 

discriminate kin from non-kin (i.e., determine the presence of a con-specific 

genotype) in mixed infections, as suggested by previous experiments (Wargo et al., 

2007a, Reece et al., 2008, Pollitt et al., 2011b, Cameron et al., 2013). It is also 

possible that the high concentration of parasitized material in the AJ and ER cues 

mimicked a high density infection or high parasite mortality. Lysed, uninfected 

RBCs (UL) were intended to act as a control for the lysed, parasitised material, to 

distinguish whether any responses to the AJ and ER cues were due to parasite 

products or the lysed RBCs themselves. It is also possible that the administration of 

lysed uninfected RBCs mimics anaemia because many uninfected RBCs are lysed 

during an infection and gametocyte investment and sex ratio correlate with RBC 

resource availability (Trager et al., 1999, Paul et al., 2003, Reece et al., 2005). Cells 

(RBCs and parasites) and the serum of the blood they were collected in were present 

in the cues. This was to maximize the chance that the cue material contained all 



 

59 

potentially relevant factors, for example molecules released from inside cells, 

membrane components, or immune factors in the plasma. 

 

To prepare the cue material, eight mice were infected via intraperitoneal (IP) 

injection with 1 x 10
6 

AJ parasitized RBCs, and eight separate mice with 1 x 10
6 

ER 

parasitized RBCs; both passaged from donor mice. When these infections reached 

their peak densities (on day 7 or 8 post infection (PI)), blood (infected with parasites 

at ring and trophozoite stages) was extracted from anaesthetized mice via cardiac 

puncture. Total blood volume, RBC density and parasite density were recorded for 

each mouse. The AJ and ER infected blood was pooled separately. The density of 

parasites in the pooled blood for each strain was similar; for AJ this was 1.61 x 10
9 

parasitized RBCs/ml of cue and for ER-infected blood this was 1.31 x 10
9 

parasitized 

RBCs/ml of cue. RBC densities were also similar, with an average RBC density for 

the AJ cue of 5.14 x 10
9 
RBCs/ml blood

 
and 4.77 x 10

9
 RBCs/ml blood for the ER 

cue. Blood from naïve mice was collected for the UL cue. The RBC density for 

blood from naïve mice was much higher (9.06 x 10
9 

RBCs/ml blood) than for the AJ- 

and ER-infected mice. Therefore, to ensure RBC density was consistent across all 

cues, the blood for the UL cue was diluted with serum from uninfected mice, to give 

a final RBC density of 4.53 x 10
9 

RBCs/ml blood. For each of the cue treatment 

groups requiring lysed material (AJ, ER, UL) the cues went through four cycles of 

freeze–thaw, to ensure lysis of RBC and parasite membranes. Lysed cues were 

confirmed not to contain any live parasites capable of initiating an infection prior to 

the experiment, as follows. Three naïve mice each received 2 x 100 µl IP injections 

of the AJ cue with a four-hour gap between injections. PCR analysis of blood DNA 
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samples (Drew and Reece, 2007) taken from the three mice confirmed that no 

parasite material was present in the blood 48 hours after injection of the cue and no 

infections appeared over the subsequent two weeks. Finally, for the U cue treatment 

group, blood was obtained via cardiac puncture from a naïve mouse immediately 

before it was injected as a cue.  

 

On treatment days, 2 x 100 µl of cue material was administered to hosts via IP 

injection, with a four-hour gap between the injections. For the AJ cue, each host 

received a total of 1.03 x 10
9
 lysed RBCs, of which 3.21 x 10

8 
had been parasitized. 

For the ER cue, each host received a total of 9.53 x 10
8 

RBCs, of which 2.62 x 10
8 

were parasitized. The lysed parasite material that was administered in both the AJ 

and ER cues was at least at the density that is typically observed at the peak of live 

AJ infections (assuming some cue material is cleared by innate immune factors 

before reaching the bloodstream). For example, the mean parasite density at the peak 

of infection for the control group, in cohort 2, of this experiment was 5.95 x 10
7
 

parasites/ml blood. The cue administration regime (2 x 100 µl IP injections), with a 

four-hour gap between injections was chosen from pilot studies because it results in 

parasite material being detectable (by PCR) in the blood from 20 minutes and up to 

24 hours post administration of the first cue; ensuring that cues are present in the 

bloodstream during the ring and trophozoite stages of the asexual cycle. Exposing a 

large proportion of the asexual cycle to cue treatments was necessary, because it is 

not known which stage is responsible for detecting the environmental signals that 

influence gametocyte investment and sex ratio decisions. 
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3.3.3 Experimental design 

Two cohorts, each containing 40 mice, were used to compare the effect of the cues 

administered during the pre-peak phase (day 4 PI; cohort 1) and post-peak phase 

(day 10 PI; cohort 2) of AJ focal infections (table 3.1). Whilst transmission can occur 

throughout P. chabaudi infections, these time-points were chosen specifically 

because previous studies have revealed that this is when the largest effects of mixed-

genotype infections on gametocyte investment and sex ratio have been observed 

(Reece et al., 2008, Pollitt et al., 2011b). On day 0, all mice were infected with 1 x 

10
6 

AJ parasitized RBCs via IP injection, and mice were randomly allocated to the 

cohorts and cue treatment groups. Gametocyte density and sex ratio were examined 

on the days of cue administration to verify that there was no significant variation 

across treatment groups that could confound the detection of parasite responses. For 

P. chabaudi, it is thought that committed parasites differentiate into gametocytes in 

the cycle following the detection of a cue, that gametocytes require approximately 48 

hours to reach maturity, and gametocytes remain infectious for a further 24 hours 

(Buckling et al., 1999a). Therefore, to cover the period over which the focal AJ 

parasites could detect cues, adjust their reproductive strategies in response, and for 

the resulting gametocyte investment and sex ratios phenotypes to be detected, 

infections were monitored over the three days (i.e., three asexual cycles) following 

cue administration. To check whether aspects of the in-host environment (known to 

influence reproductive strategies, which could confound parasite responses to the 

cues given) varied across the treatment groups, the densities of RBCs, asexual stages 

and the proportion of RBCs that were reticulocytes were also monitored for three 
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days post cue administration. The experiment was designed so that the responses to 

all cues could be compared to each other, and so that some cues could be combined 

to test for general responses to lysed parasites and/or lysed RBCs by grouping cue 

treatments into those containing parasite material (‘P’) or not (‘NP’), and those 

containing lysed RBC material (‘L’) or not (‘NL’), (table 3.1). 

 

3.3.4 Data collection and analysis 

Blood samples (taken from tail snips) were collected for thin smears (to count 

reticulocyte proportion), to measure RBC densities (using flow cytometry, 

Beckmann Coulter Counter), and for DNA and RNA to quantify parasites, 

gametocytes and sex ratios. Samples were collected daily, from day 2 to day 15 PI 

for both cohorts, but analyses were restricted to day 4 to day 7 PI for cohort 1, and 

day 10 to day 14 PI for cohort 2. Mouse weight was monitored every other day for 

both cohorts. All samples were obtained in the morning when parasites were at ring 

stage, before DNA replication for the production of daughter progeny had occurred. 

The density of reticulocytes was calculated from examination of blood smears and 

coulter count readings. DNA and RNA were extracted from blood samples using the 

ABI Prism 6100 Nucleic Acid PrepStation and the Bloodprep chemistry (for DNA, 

Life Technologies) or total RNA chemistry system (RNA, LifeTechnologies) as 

described in (Drew and Reece, 2007). cDNA was generated from RNA and 

quantitative PCR was used to quantify DNA or cDNA, according to the protocols 

outlined in (Drew and Reece, 2007). Real-time PCR was performed a) on DNA 

using CG2 primer pairs (Wargo et al., 2007a) to quantify asexual parasites, b) on 

cDNA using CG2 primer pairs to quantify total gametocytes, and, c) on cDNA using 
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MG8 primer pairs to quantify male gametocytes, according to the protocols outlined 

in (Drew and Reece, 2007). Sex ratios were calculated by dividing the number of 

male gametocytes by the total number of gametocytes in any given sample. 

 

Data were analysed using R version 3.0.2. Response variables were log10 

transformed (gametocyte density) or arcsine square root transformed (sex ratio) to 

meet the assumptions of normality. ANOVAs were performed to compare RBC 

densities, reticulocyte densities and asexual densities across cue treatment groups. 

Comparisons were made on the day of cue administration before cues were given, 

and for the following three days. The cumulative gametocyte densities for three days 

post cue administration were used to compare gametocyte investment decisions 

across treatments. In this case, it was appropriate to use gametocyte density as a 

measure of gametocyte investment because asexual densities did not vary 

significantly across the treatment groups before cue administration (see table 3.2). 

This means that any observed differences in gametocyte density must result from 

different levels of gametocyte investment (i.e., given that all else is equal, variation 

in gametocyte densities can only result from variation in investment in response to 

cues). This approach also avoids the difficulties of accurately calculating gametocyte 

investment (Carter et al., 2013), especially when the time period between parasites 

detecting cues and their response being measurable is uncertain. Similarly, for sex 

ratio, the time between parasites detecting cues and their response being measurable 

is uncertain, so the mean sex ratio for the three days post cue administration was 

compared across groups. Finally, Welch’s unpaired T test (for unequal variances) 

was used to compare the effects of parasitized versus non-parasitized cues and lysed 
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versus non-lysed cues on cumulative gametocyte densities and mean sex ratios for 

both cohorts 1 and 2. The number of samples analysed varied between tests because 

(a) some mice died during the experiment, and (b) total and male gametocyte 

densities below the lower limits of detection for the PCR were excluded, because 

quantification was unreliable. 

 

Table 3.2 Summary of ANOVA analyses.  

Asexual density and the in-host environmental parameters of RBC density 

and proportion of reticulocytes did not vary significantly across the treatment 

groups - either prior to, or post cue administration, in either cohort. 

Furthermore, gametocyte density and sex ratio did not vary significantly prior 

to cue administration. This means that the effects of the cue treatments were 

not confounded by unintended variation in the in-host environment or pre-

existing variation in gametocyte density and sex ratio (see also appendix 

figure 1). 

 Cohort 1 Cohort 2 

 Prior: day 4 Post: days 5-7 Prior: day 10 Post: days 

11-13 

Asexual density F4, 34 = 1.13, p 

= 0.36 

F4, 34 = 0.79, p 

=0.54 

F4, 25 = 0.59, p = 

0.68 

F4, 24 = 0.14, p 

= 0.97 

RBC density F4, 34 = 1.00, p 

= 0.42 

F4, 34 = 1.70, p 

= 0.17 

F4, 28 = 1.62, p = 

0.20 

F4, 24 = 0.45, p 

= 0.77 

Reticulocyte proportion F4, 34 = 1.05, p 

= 0.40 

F4, 34 = 0.32, p 

=0.86 

F4, 28 = 0.77, p = 

0.56 

F4, 24 = 1.53, p 

= 0.23 

Gametocyte density F4, 34 = 0.17, p 

= 0.95 

F4,34 = 0.39, p 

= 0.81 

F4, 28 = 1.60, p = 

0.20 

F4,20 = 1.73, p 

= 0.18 

Sex ratio F4,31 = 1.27, p 

= 0.30 

F4,34 = 0.60, p 

= 0.67 

F4,28 = 0.63, p = 

0.64 

F4,26 = 0.22, p 

= 0.93 

 



 

65 

3.4 Results 

3.4.1 Asexual densities and in-host environmental variables  

Asexual density, RBC density, and the proportion of RBCs that are reticulocytes all 

correlate with reproductive decisions and so variation in these parameters across 

treatment groups could potentially confound any responses to the cue treatments. 

However, there was no significant variation in these parameters across treatment 

groups, either before cue administration, or over the subsequent three-day period, for 

either cohort (table 3.2, appendix figure 1)  

  

3.4.2 Gametocyte investment 

Gametocyte densities were not significantly different between treatment groups 

either pre peak of infection (cohort 1) or post peak (cohort 2) on the days of cue 

administration (figure 3.1A and table 3.2). This result, together with the validation 

that asexual densities and in-host environmental variables were not significantly 

different prior to cue administration means that, in this study: gametocyte density is 

synonymous with gametocyte investment. For the three days following cue 

administration, there were no significant differences in cumulative gametocyte 

densities between the five cue treatment groups in either cohort 1 or cohort 2 (figure 

3.1A and table 3.2). When treatments were grouped to compare the effect of cues 

containing parasitized (P) versus non-parasitized (NP) material, there were no 

significant differences in gametocyte densities in cohort 1 (t (35.8) = 0.83, p = 0.41) 

(figure 3.1B). However, in cohort 2, gametocyte density was significantly 50% lower 

in infections that received parasitized cues (378 ± 75 gametocytes/µl blood), 
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compared to those that received non-parasitized cues (753 ± 125 gametocytes/µl 

blood), (t (22.9) = -2.19, p = 0.04) (figure 3.1B). Finally, when treatments were 

grouped to compare cues containing lysed (L) or non-lysed (NL) material, there were 

no significant differences for cohort 1 (t (12.8) = 0.12, p = 0.91) or cohort 2 (t (6.6) = 

-1.47, p= 0.19) (figure 3.1C).  
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Figure 3.1 Plasmodium chabaudi AJ gametocyte density dynamics. (± 

SEM) from the day of administration of five cue treatments: C: control, U: 

uninfected RBCs, UL: uninfected lysed RBCs, AJ: AJ infected lysed RBCs 

and ER: ER infected lysed RBCs. Grey bars indicate the days when cues 

were administered - on day 4 PI for cohort 1 (left) and day 10 PI for cohort 2 
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(right) (A); cumulative gametocyte densities (± SEM) for three days post 

treatment with cues containing parasitized material (P: AJ, ER) or non-

parasitized material (NP: C, U, UL) for cohort 1 (left) and for cohort 2 (right: 

where gametocyte density was significantly lower in the P group than NP 

group) (B); cumulative gametocyte densities (± SEM) for three days post 

treatment with either lysed RBC material (L: UL, AJ, ER) or non-lysed 

material (NL: C, U) for cohort 1 (left) and cohort 2 (right) (C). 

   

3.4.3 Sex ratio 

Sex ratios (proportion of male gametocytes; figure 3.2A) were not significantly 

different between cue treatment groups for cohort 1 or cohort 2 on the days of cue 

administration (table 3.2). Therefore, as for gametocyte density, there was no pre-

existing significant variation in sex ratios that could have confounded any changes in 

sex ratio following the cue treatments. For the three days following cue 

administration there were no significant differences in mean sex ratios between the 

five treatment groups in cohort 1 or cohort 2 (figure 3.2A and table 3.2). When cue 

treatments were grouped to compare the effect of parasitized (P) versus non-

parasitized (NP) material, there were no significant differences in mean sex ratio in 

cohort 1 (t (36.7) = 0.66, p = 0.51), or in cohort 2 (t (27.8) = -0.35, p = 0.73) (figure 

3.2B). However, when treatments were grouped to compare the effects of cues 

containing lysed (L) or non-lysed (NL) material, there was a borderline significant 

increase in sex ratio (of 45%) in infections that received lysed material (0.11 ± 0.02), 

compared to those that received non-lysed cues (0.06 ± 0.01) in cohort 1 (t (27.0) = 

2.04, p = 0.05), but not in cohort 2 (t (9.87) = -0.13, p = 0.90) (figure 3.2C). 
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Figure 3.2 Plasmodium chabaudi AJ sex ratio (proportion of male 

gametocytes) dynamics. (± SEM) from the day of administration of five cue 

treatments: C: control, U: uninfected RBCs, UL: uninfected lysed RBCs, AJ: 

AJ-infected lysed RBCs and ER: ER-infected lysed RBCs). Grey bars 

indicate the days when cues were administered - on day 4 PI for cohort 1 
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(left) and day 10 PI for cohort 2 (right) (A); mean sex ratio (± SEM) for three 

days post treatment with cues containing parasitized material (P: AJ, ER) or 

non-parasitized material (NP: C, U, UL) for cohort 1 (left) and cohort 2 (right) 

(B); mean sex ratio (± SEM) for three days post treatment with either lysed 

RBC material (L: UL, AJ, ER) or non-lysed material (NL: C, U) for cohort 1 

(left: where sex ratio was significantly (borderline) higher in the lysed group), 

and for cohort 2 (right) (C). 

 

3.5 Discussion  

The experiments presented here reveal that: (i) gametocyte investment is reduced by 

50% in response to lysed material containing parasites (P) compared to material 

without parasites (NP); (ii) the change in gametocyte investment in response to 

parasitized material occurs post peak of infections but not during the growth phase; 

(iii) there was a borderline significant increase (45%) in the proportion of  male 

gametocytes in infections given lysed (L) compared to non-lysed (NL) material; and, 

(iv) the potential sex ratio adjustment in response to lysed material only occurred in 

the growth phase of infections. The following paragraphs discuss how these results 

compare to studies of human and rodent infections that report changes in sex ratio 

and gametocyte investment in response to variation in RBC resource availability, 

drugs, competition, and parasite density (Buckling et al., 1997, Trager et al., 1999, 

Buckling et al., 1999b, Buckling et al., 1999a, Paul et al., 2000, Robert et al., 2003, 

Dyer and Day, 2003, Reece et al., 2005, Wargo et al., 2007b, Reece et al., 2008, 

Sowunmi et al., 2009, Peatey et al., 2009, Neal and Schall, 2010, Reece et al., 2010 

Pollitt et al., 2011b). 

 

In the post-peak phase of infections, why do parasites make different gametocyte 
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investment decisions when exposed to material derived from non-parasitized (NP) 

blood compared to parasitized blood (P, figure 3.1B)? Gametocyte investment is 

lower in the P group compared to NP group which suggests that either the parasites 

in the P group are adopting reproductive restraint (i.e., actively reducing investment) 

or the parasites in the NP group are making a terminal investment (i.e., actively 

increasing investment). The former scenario is the most likely for the following 

reasons. When parasites are faced with adverse, but not lethal, circumstances either 

due to resource limitation or death rates that do not exceed the capacity for 

replication, they are predicted to adopt a strategy of reproductive restraint (Mideo 

and Day, 2008, Pollitt et al., 2011a, Carter et al., 2013) (chapter 2). Lysed parasite 

material in the P group could signal that many parasites are being killed (e.g., due to 

immune attack or drugs) and reproductive restraint enables the replication rate to 

exceed the death rate. The ability to predict future scenarios may seem highly 

sophisticated for parasites, but this is one of the main evolutionary drivers of 

adaptive phenotypic plasticity (Scheiner, 1993, McNamara et al., 2009). Preparing 

for environmental change in advance avoids fitness costs incurred by delays involved 

in waiting for the environment to change and then reacting, or not reacting to 

environmental change at all (deWitt et al., 1998). Second, the gametocyte investment 

of parasites in the NP group appears too low to be explained by terminal investment. 

This is because the NP group includes the unmanipulated control group and most 

studies use such infections as a baseline to demonstrate that increased investment 

(i.e., terminal investment) occurs in response to drugs. In summary, gametocyte 

investment appears to be reduced in response to material from parasitized blood, 

which is consistent with parasites adopting reproductive restraint to maximize 
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survival during stressful, but not lethal, challenges during infections (Wargo et al., 

2007a, Reece et al., 2010, Pollitt et al., 2011b). 

 

Instead of parasites actively adjusting gametocyte investment, could differential 

immune responses in the P and NP groups explain the observed differences in 

gametocyte investment? It is possible that the administration of lysed parasitized 

material induced the host to produce the pro-inflammatory cytokines interferon 

gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), which are 

known to be involved in killing gametocytes (Naotunne et al., 1991, Naotunne et al., 

1993, Long et al., 2008). However, data from in vitro studies suggest this would be 

unlikely, as the induction of TNF and IFN-gamma is much reduced when exposed to 

lysed parasitised RBCs, compared with exposure to live intact parasitised RBCs 

(Scragg et al., 1999, Hensmann and Kwiatkowski, 2001, O'Dea and Pasvol, 2003, 

Waterfall et al., 1998). Furthermore, the induction of TNF by lysed parasites in 

culture is negligible when the parasitised erythrocytes were harvested and lysed at 

ring and / or trophozoite stages (compared to lysis at schizont stage) (Scragg et al., 

1999). As such, the P group (a lysed mixture of ring and trophozoite infected 

erythrocytes) is unlikely to have induced TNF to a level that was sufficient to clear 

gametocytes. Furthermore, the gametocytocidal activity of TNF is rapid (Naotunne et 

al., 1991) and would therefore have produced a sharp drop in the P group on day 11 

only, which was not observed. Finally, the cue treatments were the same in cohort 1 

and 2 and so should elicit the same immune responses. If these responses killed 

gametocytes then fewer gametocytes would have been observed in the P group of 

cohort 1 as well, but this was not the case.  
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The question of why parasites only adopted reproductive restraint in response to 

parasite material in the post-peak phase (i.e., in cohort 2) of infections requires 

further work. This timing is consistent with previous studies showing that the 

difference in gametocyte investment between parasites in control and sub-lethal 

conditions increases over time (Reece et al., 2010, Pollitt et al., 2011b). Furthermore, 

the timing suggests a biologically significant difference in phenotype with real 

epidemiological relevance, as it is at this later stage of Plasmodium chabaudi 

infections where transmission is typically most successful in laboratory studies 

(Ferguson et al., 2003). Furthermore, a twofold reduction in gametocyte density in 

Plasmodium falciparum infections can have a significant impact on the proportion of 

mosquitoes infected (Churcher et al., 2013). The lack of any effect in the pre peak 

phase of the infection may be due to the difficulty in detecting small effects at low 

parasite densities (as is the case early in infections), or because parasites become 

increasingly able to detect, or respond to, environmental changes as infections 

progress. The latter is perhaps the most parsimonious explanation because 

cumulative gametocyte densities are very similar between all of cohort 1 and the P of 

cohort 2 (figure 3.1B; (t (41.5) = -1.02, p= 0.31). This may reflect a necessity to 

maintain a baseline level of gametocyte production to ensure no transmission 

opportunity is wasted, even during reproductive restraint.  

 

Why might parasites make different sex ratio decisions when exposed to material 

derived from lysed cells (L; parasites and RBCs), and why is this only observed in 
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the growth phase of infections? Further work is required to confirm whether parasites 

do produce a less female-biased sex ratio when exposed to lysed cues (because 

significance was borderline), but this pattern is predicted by evolutionary theory and 

consistent with other data (West et al., 2001, Gardner et al., 2003, Reece et al., 

2008). Lysed material could either represent host anaemia, or the material could have 

stimulated innate host immune responses that reduce the fertility of males more than 

females. In these situations, males become a limiting resource for fertilization and so 

parasites are predicted to partially compensate by increasing their investment in male 

relative to female gametocytes (West et al., 2001, Paul et al., 2002, West et al., 2002, 

Gardner et al., 2003, Reece et al., 2008, Ramiro et al., 2011). That extra males are 

required to ensure females are fertilized when transmission blocking immune factors 

have more severe effects on males is intuitive, but why are more males required 

when hosts are anaemic? Each male gametocyte can produce up to eight gametes, but 

each female only produces one gamete, which means that the number of parasite 

progeny is maximized at a ratio of eight female gametocytes to one male gametocyte 

(Hamilton, 1967, Godfray and Werren, 1996). However, when there are eight-fold 

fewer male gametocytes circulating in the host and gametocyte density is very low, 

or hosts are anaemic, there is a stochastic risk that blood meals do not contain 

enough males to ensure the females are fertilized (West et al., 2001, Gardner et al., 

2003). Therefore, if lysed material represents anaemia and/or immune factors, 

parasites will be most sensitive to these scenarios when gametocyte density is low 

(i.e., in cohort 1; figure 3.1C). In summary, similarly to the gametocyte investment 

results, the sex ratio data suggest lysed cell material (parasitized and non-parasitized) 

is interpreted as a cue for adverse conditions.  
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Based on previous observations of mixed genotype infections and evolutionary 

theory (Hamilton, 1967, Godfray and Werren, 1996, Schall, 2000, Eisen and Schall, 

2000, Reece et al., 2008, Mideo and Day, 2008, Neal and Schall, 2010, Pollitt et al., 

2011b), parasites were predicted to adopt different reproductive strategies when 

exposed to cue material derived from self (AJ) versus a non-self, con-specific 

genotype (ER). However, there were no significant differences either in gametocyte 

investment (figure 3.1A) or sex ratio (figure 3.2A) when parasites were exposed to 

AJ versus ER cue material, in either cohort. This could be due to a number of (non-

mutually exclusive) reasons. First, there may not have been a high enough 

concentration of lysed ER parasite material in the bloodstream in the ER group for 

live AJ parasites to discriminate kin from non-kin. Alternatively, the cue to 

discriminate kin may be something that is only actively secreted by live parasites in 

direct response to competitors (which were not present in the cue-generating 

infections), or degraded in the freeze-thaw process. For example, malaria parasites 

could employ a similar quorum-sensing strategy to that observed in bacteria (Miller 

and Bassler, 2001, Diggle et al., 2007) and use microvesicles (Mantel et al., 2013) or 

exosome-like vesicles (Regev-Rudzki et al., 2013) derived from infected RBCs as a 

carrier for the cue. However, microvesicle or exosome structures may have been 

destroyed during cue preparation lysis. The cue treatments were designed simply to 

test whether parasite responses could be elicited, rather than to identify precisely 

what they are detecting, so it is possible that the live AJ parasites could discriminate 

kin, but the AJ and ER cues also represented other scenarios (e.g., a high death rate), 

that provided a stronger stimulus and resulted in the responses detected.  
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3.6 Conclusions 

Despite decades of investigating gametocytes, how the genes and molecular 

pathways underpinning commitment to gametocytes and sexual differentiation 

interact with environmental sensing has proved difficult (Dixon et al., 2008, 

Ranford-Cartwright and Mwangi, Liu et al., 2011, 2012, Guttery et al., 2012), 

although recent characterisation of the ApiAP2 gene family in Plasmodium 

falciparum and Plasmodium berghei is promising (Kafsack et al., 2014, Sinha et al., 

2014). The difficulty may be partly due to different genes and pathways being 

involved in: (a) sensing environmental cues relevant to decisions about reproductive 

strategies; (b) processing information and making decisions; and, (c) producing the 

gametocyte investment and sex ratio phenotypes resulting from the decisions made 

(Carter et al., 2013). Breaking down treatments to isolate the molecule(s) used as a 

cue(s) within the morass of lysed cells and serum used in this study could facilitate 

further characterization of molecular mechanisms underpinning commitment and 

differentiation into gametocytes. Repeating the experiments presented here in vitro, 

to expose synchronous parasites at different time points within the cell cycle could 

reveal which developmental stages are responsible for sensing and responding to 

changes in the in-host environment. More broadly, it may be possible to harness cues 

to ‘trick’ parasites in an infection into producing gametocytes instead of asexuals, or 

only producing gametocytes of a single sex (Williams, 2010, Carter et al., 2013). The 

former strategy could be useful for treating returned travellers in hospital (without 

malaria vectors) because the virulence of infections will be reduced, and the latter 

strategy would prevent fertilization and subsequent transmission. Finally, precisely 

identifying the cues that parasites use to make reproductive decisions is required to 
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quantify the costs and benefits (fitness consequences) of their strategies, which is 

central to understanding their evolution.  

 

 



 

78 

4 Biology and behaviour of Plasmodium berghei microgametes 

4.1 Summary 

Despite sexual reproduction in the mosquito midgut being essential for their 

transmission, little is known about the mating behaviour of malaria parasites. Once 

inside the mosquito vector, gametocytes immediately differentiate into male and 

female gametes and motile male gametes must swim through the hostile environment 

of the bloodmeal to find and fertilise female gametes.  Developing drugs and/or 

vaccines that prevent transmission by disrupting mating are major goals of 

biomedicine and the male gamete (microgamete) is thought to be an attractive target 

for such interventions. Therefore, knowledge of fundamental aspects of microgamete 

morphology and behaviour is key to developing successful transmission blocking 

interventions.  Here, I describe three projects to elucidate key characteristics of the 

microgamete. First, I demonstrate how digital holographic microscopy can be used to 

characterise the morphology and motility of microgametes. The observations I make 

about microgamete motility raise questions about the consequences of their 

interactions with red blood cells in the blood meal, and how microgametes find 

females. I therefore carried out two further projects which experimentally 

manipulated the mating environment in vitro; to test whether mating is hindered by 

obstacles (such as red blood cells) and to test whether microgametes preferentially 

swim towards female gametes.  
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4.2 Introduction 

To transmit to new vertebrate hosts, malaria parasites must produce specialised 

sexual stages (gametocytes) which are taken up in the blood meal of the mosquito 

vector. Gametocytes are produced continuously (but in varying numbers) throughout 

infections (Carter et al., 2013) and circulate in the blood stream for several days 

whilst waiting to be taken up when an insect vector bites the host and takes a blood 

meal (Baton and Ranford-Cartwright, 2005, Bousema and Drakeley, 2011). As soon 

as male and female gametocytes are ingested by a mosquito, gametogenesis is 

triggered by the drop in temperature, change in pH, carbon dioxide tension and 

mosquito midgut factors such as xanthurenic acid (Billker et al., 1997, Arai et al., 

2001), but see chapter 5 for a more in-depth analysis of this. Within a few minutes of 

ingestion, male and female gametocytes round up and shed their surrounding RBC 

membranes. Female gametogenesis does not involve any DNA replication; a single 

female gamete simply emerges from the residual gametocyte infected RBC 

(facilitated by pre-synthesized secretory organelles called osmiophilic bodies) (Ponzi 

et al., 2009), but male gametocytes undergo a process termed exflagellation; 

producing up to eight flagellated and motile male gametes (microgametes) from each 

gametocyte (MacCallum, 1897, Laveran , 1881).    

 

4.2.1 Microgametes  

Within ten minutes of activation, male gametocytes have undergone three rapid 

rounds of endomitosis and axoneme assembly within the cytoplasm (Sinden et al., 

1976). A single microtubule organising centre (MTOC) located on the cytoplasmic 
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side of the nuclear pore consists of eight basal bodies which are the nucleation sites 

for the growth of microtubules to make up the tubulin-based axonemes of 

microgametes (Sinden et al., 2010). Unlike the basal bodies of most eukaryotic cilia 

which have nine microtubule triplets, the malaria microgamete axoneme has a set of 

nine singlets surrounding two central microtubules (Sterling and Aikawa, 1973) 

(figure 4.1C).  Chromatin condensation, axoneme motility and cytokinesis are the 

final stages before the nucleated, flagellated microgametes are extruded from the 

gametocyte body (Sinden et al., 2010). The flagellum is forced through the 

gametocyte membrane, tearing the adjacent haploid genome along with some of the 

nuclear envelope from the parental nucleus into the emerging gamete (Sinden et al., 

1976). As a result, nuclear material is distributed along the axoneme over a length of 

1-2μm (Sinden et al., 2010, Straschil et al., 2010) and is surrounded by a plasma 

membrane (Sinden et al., 1976, Sinden et al., 2010) (figure 4.1). Despite the complex 

processes involved in microgamete development, both genetic and micrographic 

evidence indicate that the microgamete is a very simple cell, containing no other 

organelles than the axoneme, nucleus and plasma membrane (Sinden et al., 1976, 

Okamoto et al., 2009) (figure 4.1A,B). During the process of gametogenesis, 

microgametes are frequently observed interacting with RBCs, other parasite infected 

cells, and emerged female gametes in vitro. However, the reason for these temporary 

but strong interactions, termed ‘exflagellation centres’ (Templeton et al., 1998) is not 

known, and has not yet been examined in vivo. Because of this, it remains unclear 

whether these interactions have a requisite function, are a hindrance to mating 

success or simply an artefact of in vitro conditions (in which, cells are typically less 

dense than the mosquito midgut). 
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Figure 4.1 Microgamete morphology Longitudinal (A) and angled (B) 

cross-sectional illustrations show the simplicity of a typical P. berghei 

microgamete (credit: Francesca Bourne). The sketches are based on 

electron micrographs in studies by Straschil et al. (Straschil et al., 2010) and 

Sinden et al. (Sinden et al., 2010), and are labelled to show the key features 

of the flagellum. (C) Cross-sectional schematic diagram of a microgamete 

detailing the elements common to a typical 9+2 axoneme (credit: Laurence 

Wilson). The flagellar waveform is driven by microtubule doublets, which, in 

A 

B 

C 



 

82 

turn, are driven by the shearing force generated by the dynein arms. Figure 

is adapted from (Wilson et al., 2013).  

 

4.2.2 Microgamete morphology and behaviour  

Once released from the residual gametocyte body, flagellated microgametes must 

locate and fertilise the non-motile female gametes within a brief (approximately 30-

60 minute) time window before the gametes stop swimming and die (Carter and 

Nijhout, 1977, Sinden et al., 2010). It is not exactly clear what determines 

microgamete lifespan, but the mosquito midgut it is assumed to be extremely hostile 

for microgametes. A limited supply of resources such as glucose may constrain 

swimming duration (Nijhout and Carter, 1978, Wass et al., 2012), and a number of 

host-derived immune factors are taken up in the bloodmeal which can inhibit and kill 

microgametes (reviewed in (Aikawa et al., 1981, Mendis et al., 1990, Naotunne et 

al., 1991, Naotunne et al., 1993, Motard et al., 1993, Ramiro et al., 2011, Long et al., 

2008). Furthermore, mosquitoes perform diuresis to concentrate the blood (Vaughan 

et al., 1991), which is likely to dramatically change the biophysics of the bloodmeal 

to a more colloidal composition and therefore reduce the ease of microgamete 

motility. Due to the difficulties parasites face during mating, fertilization appears to 

be a significant bottleneck in the parasite life cycle, and so interventions that target 

the fertility of microgametes are thought to offer a good opportunity to stop disease 

transmission (Eksi et al., 2006, Ponzi et al., 2009, van Dijk et al., 2010).  

 

However, there is a lack of knowledge about fundamental and diverse aspects of 

microgamete morphology and behaviour. For example, definitive values for the 

length, diameter, speed, wavelength, fundamental chirality (clockwise / counter 
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clockwise motion) and beating pattern of microgametes are unclear. Why 

microgametes interact with RBC and whether microgametes follow non-random 

paths when searching for females are also unknown. I address these issues in this 

chapter: section 4.3 demonstrates how digital holography can be used to improve 

resolution of known microgamete features and to reveal new characteristics; section 

4.4 explores the effect of increasing blood and microparticle density on fertilisation 

success in vitro; and section 4.5 investigates whether microgametes follow non-

random paths when searching for females. A better understanding of microgamete 

morphology and behaviour might reveal novel targets for interventions as well as 

provide insight into making interventions robust to parasite evolution.  
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4.3 Microgamete structure and motility 

This section is adapted from the supplementary information that I wrote for (Wilson 

et al., 2013). The supplementary information provided a broader context of the 

measurements of microgametes obtained by high speed digital holographic 

microscopy, as well as their implications for the mating biology. It also emphasises 

the interdisciplinary nature of this work, and proposes how results obtained from 

biochemical and genetic studies of malaria parasites can help to answer 

longstanding questions in physics, by allowing an unprecedented level of control 

over the structure of the axoneme.  

 

4.3.1 Background  

The ambition of this interdisciplinary project was to highlight the utility of the 

‘simplicity’ of malaria microgametes to understand the fundamental mechanics of 

axonemes (which underlie flagellar waveforms). Understanding the biophysics of 

flagella will inform research across a wide range of biological disciplines and 

medical disorders. All eukaryotic cilia and flagella have the same basic structure, but 

they facilitate cells to move and pump fluid to perform a number of different roles; 

ranging from sensory detection, fluid transport in the brain and sperm propulsion 

(Satir, 1965, Sanchez et al., 2011). Therefore, understanding how flagella beat is 

critical in understanding medical ciliopathies, including male and female infertility, 

hydrocephalus and kidney diseases.  

 

Flagella waveforms are also important for parasitology because microgamete 

swimming characteristics have implications for the evolution of parasite mating 

strategies and success of transmission blocking interventions. Previous work on 

flagellar waveforms has been limited to two-dimensional data, typically from model 
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systems that are constrained by accessory structures which obscure the fundamental 

waveform patterns. Therefore, as isolated swimming flagella, without any structures 

such as a cell body (as in Chlamydomonas algae) which potentially restrict or alter 

their natural motility; P. berghei microgametes offer a unique model system for 

studying basic flagellar motility.  

 

Using a new approach; with high speed digital microscopy and 3D holographic 

reconstruction (developed by (Wilson and Zhang, 2012) and used in (Wilson et al., 

2013)), several key physical characteristics of the microgamete of P. berghei were 

quantified (summarised in table 4.1); some for the first time (e.g., swimming 

direction, beating pattern and chirality of the microgamete) and others (e.g., length, 

diameter, wavelength, speed) in a more robust way than with previous attempts 

(Sinden, 1975, Straschil et al., 2010). The following sections outline the approach 

used, the measurements made, and their implications for the mating biology of 

malaria parasites. 

 

4.3.2 Methods 

The rodent malaria parasite P. berghei line 820 (from The University of Edinburgh’s 

malaria reagent repository http://malariaresearch.eu/) was used to initiate infections 

in male MF1 mice (8-10 weeks old), which had been pre-treated with 

phenylhydrazine (PHZ) at 125 mg/kg (2 days prior to infection) to enhance the 

production of gametocytes (Reece et al., 2008). Five independent infections were 

initiated with 10
7 

parasitized red blood cells. Infected blood was collected by tail snip 

when gametocytes reached maturity (day 4 or 5 post infection). For each sample, to 

http://malariaresearch.eu/
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stimulate the differentiation of gametocytes into microgametes, 2μl infected blood 

was added to 1 ml of complete ookinete culture media (RPMI + 10% foetal calf 

serum, pH 8) and incubated at room temperature (20
o
C; the optimal temperature for 

transmission of P. berghei) in vitro. Microgametes were filmed using a Nikon Ti 

inverted microscope and a complementary oxide semiconductor (CMOS) camera. 

Unlike conventional microscopy techniques, digital holographic microscopy (DHM) 

does not simply record the projected image of the microgamete. Instead, the wave 

front information originating from the microgamete is digitally recorded as a 

hologram from which the microgamete is later reconstructed using an algorithm 

(Sheng et al., 2007, Wilson and Zhang, 2012,Wilson et al., 2013). DHM allows 

three-dimensional imaging at frame rates limited by the imaging device (rather than 

mechanical translation); in this case a CMOS camera (Sheng et al., 2007). 

Furthermore, unlike previous holographic studies that have tracked the average 

positions of flagella in 3D, this approach allowed measurement of individuals; 

resulting in detailed information on the variation in microgamete swimming strokes 

(Wilson et al., 2013).  

 

4.3.3 Results & Discussion 

Using DHM , several key physical characteristics of the microgamete of P. berghei 

were quantified (summarised in table 4.1). Whilst some observations are completely 

novel (e.g., swimming direction, beating pattern and chirality of the microgamete), 

the length, diameter, wavelength and speed of microgametes were quantified in a 

more robust way than with previous attempts (Sinden, 1975, Straschil et al., 2010). 
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Table 4.1. Summary of the key characteristics of the Plasmodium 

berghei microgamete identified by previous estimates (*(Straschil et al., 

2010), ^(Sinden, 1975)) and by the novel method of digital microscopy and 

holographic reconstruction (Wilson et al., 2013).  

Characteristic Previous 
estimates 

New estimate  

Length 14 ± 3μm^ 8.4 ± 1.4μm, n= 24 

Wavelength N/A 5μm, n=19 

Frequency ~6 Hz* 9.6 ± 0.7Hz, n = 19  

Diameter 0.21±0.02μm^ 0.2μm, n= 19 

Speed ~ 9μm /s* Fast and forward: 5 ± 0.4μm/s, n=19 

Slow and reverse: 0.937μm/s, n=5 

Swimming 
direction 

N/A Towards the active end 

Beat pattern Irregular*^ Irregular 

Chirality N/A Alternating waves of left and right, n = 24 

 

4.3.3.1 Structure 

The mean length of the Plasmodium berghei microgamete in this study was 8.4 ± 

1.4μm (SEM, n = 24). This variation in length could be attributed to a number of 

factors, not least the potential errors accumulated due to the speed at which the 

microgametes are assembled and released (Sinden et al., 2010). Variable lengths may 

also be due to a limited availability of resources for producing 8 full-length 

microtubules per microgamete at the time of synthesis. The microgamete length of 

8.4μm measured in this study is slightly shorter than the previous estimate of 14 ± 

3μm (Sinden, 1975). However, the microgamete diameter of 0.2μm is the same as 
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the previous estimate (Sinden, 1975). That the microgametes bend into an 

asymmetrical sinusoidal shape with a wavelength of 5.6μm are novel observations. 

Furthermore, although microgametes have no defined ‘head’, the analysis revealed 

clear ‘active’ and ‘passive’ ends (figure 4.2). The passive tail end is associated with 

the basal body, where the microgamete detaches from the residual gametocyte 

(Sinden et al., 2010). This is consistent with other sperm, where the basal region is 

the least active part of the flagellum; owing to the increased stiffness caused by 

accessory structures located there. It is also possible that the passive end exhibits 

lower flexibility because this is where the microgamete’s DNA is located. However, 

on balance, this seems unlikely; DNA is drawn into the cell through the tail end 

during the final stages of gametogenesis and the nucleus is usually distributed along 

the centre of the cell (Sinden et al., 2010).  

 

Because previous studies have suggested that 60% of P. berghei microgametes are 

either malformed, anucleate, or contain multiple axonemes (Sinden et al., 2010), 

there was risk of analysing aberrant gametes. Therefore, the probability that all the 

microgametes in the sample were aberrant was calculated as follows. In any given 

sample that was imaged, it was assumed that 60% of gametes were malformed, that 

one third of these 60% were anucleate (according to the observations of (Sinden et 

al., 2010) described above), and that it is impossible to visually distinguish between 

nucleate and anucleate microgametes (L. Wilson, personal communication). Given 

these assumptions, the chance that a single anucleate microgamete from a mixed 

population was imaged is predicted to be at approximately 33%. While this suggests 

it is likely that some (around one-third) of the microgametes in the sample were 
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anucleate, there were not two distinct populations in the estimates and it can be 

concluded either that the presence or absence of nuclear material has little impact on 

the swimming behaviour, or that anucleate microgametes are not as common as 

previously estimated. Finally, it should be noted that it is highly unlikely (~ one in a 

billion) that all 19 of the forward-swimming microgametes analysed were anucleate.  

 

Figure 4.2: Microgamete swimming direction of mammalian sperm (top) 

and the Plasmodium microgamete (bottom), where waves of curvature 

propagate from the active to the passive end (basal body). 

 

4.3.3.2 Swimming direction 

In contrast to the conventional direction of sperm motility, the microgamete swims in 

the direction of the “active end,” that is, the end with the higher average curvature. 

Waves of curvature propagate from the active end to the passive end as the 

microgamete swims (figure 4.2). This mode of swimming is analogous to the 

flagellum “pulling” the cell through the medium, rather than being “pushed” by a 
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greater activity at the tail end. The variation in average curvature is likely to be due 

to the presence of a mechanically distinct basal body, or a non-uniform distribution 

of molecular motors along the length of the flagellum such as that found in 

Chlamydomonas (Bui et al., 2012). However, further work is necessary to resolve 

this.  

 

Swimming in the direction of the active end of the flagellum is rare among sperm, 

although it has been observed in other microorganisms, such as trypanosomes 

(Rodríguez et al., 2009). . However, in a blood meal environment with tightly packed 

RBCs, having the active end at the front may enable microgametes to probe the 

environment more effectively to find spaces to pass between cells and therefore 

move more efficiently around the blood meal.  Furthermore, it is not yet known how 

microgametes locate females, but if chemotaxis (or other) cues are involved (see 

section 4.5), travelling in the direction of the active end may maximize the likelihood 

of detecting a chemotaxis gradient. This is because the active end describes a larger 

arc and so could ‘sample’ more of the environment than the passive end (which 

covers a smaller area).  Similarly, the ability to swim in reverse may also be useful 

for finding pathways between RBCs and/or tracking chemotaxis gradients. Currently, 

there is no evidence for chemotaxis, but the calculations below and investigation of 

these issues (reported in sections 4.4 and 4.5) suggest it is unlikely that 

microgametes randomly encounter female gametes.  
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4.3.3.3 Speed 

Microgametes displayed both fast and slow swimming patterns as previously 

described (Sinden and Croll, 1975). The more waves of curvature that travel along 

the microgamete in a given period, the faster it swims. For the majority of the time, 

active microgametes moved with a fast beat, which is defined here as “forward 

swimming”, at an average speed of 5.0 ± 0.4μm/s (n = 19) and a mean frequency of 

9.6 ± 0.7 Hz. A previous study (from a smaller number of independent infections and 

microgametes) estimated the same parameters by hand from videos at 16 

frames/second, finding a speed of ~9μm/s and beating at ~6 Hz (Straschil et al., 

2010). Although these results are broadly consistent with findings from this 

experiment (and variation may be introduced by differences in sample preparation), 

the methods presented here have three important advantages for comparative studies: 

(i) they are completely automated, making estimations substantially less painstaking 

and less subjective than estimation of parameters by hand; (ii) because the data is 

3D, and was obtained at higher frame rates, out-of-plane motion and motion blurring 

artefacts are removed; and (iii) because the data are in the form of coordinates that 

specify microgamete position as a function of time, it is far easier to investigate new 

motility metrics systematically without recourse to the raw data.  

 

The wavelength of microgametes (5μm) matches the average range of the diameter 

of murine RBCs (4–7μm) (Fox et al., 2006), which may represent an adaptation to 

enhance microgamete motility in the blood through interactions with RBCs. A 

similar interaction has been suggested in trypanosomes where flagella have a 

wavelength and amplitude, that matches the distance between RBCs in the blood, 
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enabling them to use the friction generated from physical interactions with RBCs to 

swim eightfold faster in blood (up to 40μm/s) than in a Newtonian fluid (cell culture 

medium) (Heddergott et al., 2012).  The experiments presented in section 4.4 provide 

initial data on the impact of RBCs on mating success, to explicitly test their 

mechanical effect on microgamete motility. However, future imaging of P. berghei 

gametes could involve measuring differences in motility parameters when exposed to 

polydimethylsiloxane (PDMS) pillar arrays of different densities and dynamics, in a 

similar manner to the experiments performed for trypanosomes (Heddergott et al., 

2012). 

 

Occasionally, microgametes were observed to swim in the opposite direction, which 

is defined here as “reverse swimming,” at a slower speed and lower frequency (up to 

threefold lower) than the forward, fast-swimming microgametes. However, these 

measurements are preliminary because they come from a small sample of 

microgametes (n = 5, whereas n = 19 for forward swimmers). Again, similarities can 

be drawn between microgamete and trypanosome motility here. Heddergott et al. 

(2012) demonstrated that when trypanosomes get trapped in a dense matrix 

(stimulating a high blood density) their beating direction is reversed.  

 

4.3.3.4 Beat plane and waveform chirality 

Unlike other sperm flagella, microgametes do not have a discernible beating pattern 

(beat plane); it is complex and irregular (Wilson et al., 2013). All microgametes that 

were imaged (including those in fast and slow beating modes) had alternating 
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chirality; with waves propagating in a left- or right-handed character on alternate 

beats, and successive waves had dissimilar shapes. Whilst the mechanisms and 

factors that determine chirality and beat pattern are still a subject of debate, the 

results from this study contradict claims that chirality is hard-wired into the axoneme 

structure (Hirokawa et al., 2009), and instead suggest that accessory structures (that 

are absent from microgametes) play a critical role in shaping the more ‘consistent’ 

flagellar beats observed in other species, compared to the irregular beat plane of the 

P. berghei microgamete.    

 

Two non-mutually exclusive aspects of mating biology that may explain the irregular 

beat plane of microgametes are as follows. First, the relatively dilute in vitro 

environment, with a low RBC density could have a similar effect on the 

microgametes as for trypanosomes, where in the absence of any obstacles, the 

flagella beat is slow and irregular (Heddergott et al., 2012). Microgametes could also 

be affected by immune factors that are taken up by the mosquito in a blood meal 

(Mendis et al., 1990, Naotunne et al., 1991, Motard et al., 1993, Naotunne et al., 

1993, Ramiro et al., 2011, Long et al., 2008). Even though immune factors are likely 

to be diluted in in vitro culture conditions, any binding to one part of a microgamete 

could potentially alter the beat plane and affect swimming direction (Bohring et al., 

2001).  
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4.3.3.5 Probability of microgametes randomly encountering females  

The parameters described above, and the calculations below enable us to estimate 

whether mating can rely on microgametes moving randomly around the blood meal 

in search of female gametes to fertilise. The approximate lifetime of a microgamete 

is 30 minutes (Carter and Nijhout, 1977, Sinden et al., 2010); the flagellar beats are 

randomly oriented with an amplitude (peak to trough) of ~ 5μm. If the microgamete 

swims at the speed that was measured in this study (5.0μm/s) for 30 min (1,800s), it 

sweeps out a cylindrical volume according to equation (1). 

 

     (1) 

 

The swimming speed may increase in a blood meal (e.g. via interactions with RBC; 

as observed in trypanosomes (Heddergott et al., 2012)), but still, the microgametes 

swim in viscous-dominated environments (i.e., at a low ‘Reynolds’ number) (Wilson 

et al., 2013). This means that microgametes cannot swim faster than the speed at 

which waves propagate along the flagellum (around 50μm/s), regardless of whether 

interactions with RBCs enhance speed. The volume explored will be 10-fold larger if 

the maximum (50μm/s) swimming speed is used. Assuming a blood meal size of 2μl 

(2× 10
−9

m
3
), this equates to a microgamete being able to explore between 1/1,000 

and 1/10,000 of a blood meal in 30 minutes. It would take more than 1 month for the 

microgamete to explore an entire blood meal at 5.0μm/s, assuming it never retraces 

its steps. However, blood meals contain multiple gametocytes and assuming a 
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gametocyte density of 10
5
 gametocytes/μl blood and a sex ratio of 30% males, 

approximately 400000 microgametes will be present the blood meal. In this case, it is 

likely that at least 1 microgamete visits everywhere in the blood meal in 30 min.  

 

These calculations are a “best case scenario” estimate based on the gametocyte 

density of P. berghei infections.  Gametocyte densities of human malaria (e.g., P. 

falciparum) in natural infections are variable but generally much lower (e.g., 500 

gametocytes /μl blood (including males and females)) (Schneider et al., 2007), which 

translates to only approximately 1,800 microgametes in the blood meal. An 

additional limiting factor here is the ratio of male to female gametocytes present in 

the blood meal. The resulting trade-off is between the area of the blood meal that the 

microgametes can cover (increased when the proportion of males is high) vs. the 

density of female gametocytes available for the microgametes to locate (which is 

decreased when the proportion of males is high). Also, the estimates above do not 

account for the negative effects of transmission-blocking immune factors (Aikawa et 

al., 1981) and the high failure rate in the production of viable microgametes (Sinden 

et al., 2010).  

 

Given the increasing appreciation that transmission to mosquitoes occurs readily 

from sub-microscopic gametocyte densities (<5 gametocytes /μl blood (Schneider et 

al., 2007)), these results suggest that the evolution of mechanisms to facilitate 

encounters between microgametes and female gametes would be favoured by natural 

selection. These could include (i) the use of interactions with RBCs to increase 
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swimming speed (as for trypanosomes (Heddergott et al., 2012), see section 4.4), (ii) 

locating females non-randomly by a mechanism such as chemotaxis (Eisenbach, 

2007) (see section 4.5) or nanotubes (tubular filaments extending from cell 

membranes, thought to establish contact for communication between gametocytes 

and gametes) (Rupp et al., 2011, Kuehn and Pradel, 2010) (iii) gametocyte 

aggregation in the circulation of the vertebrate host maximizing the densities of 

gametocytes in blood meals of vectors that become infected (Pichon et al., 2000, 

Gaillard et al., 2003) (although this mechanism trades off against the proportion of 

infected mosquitoes). Even if microgametes swim at the maximum speed of 50μm/s, 

successful mating in the absence of such mechanisms would seem unlikely for sub-

microscopic gametocyte densities. For example, if 5 gametocytes enter the mosquito 

midgut, even if 4 of these are males, this would result in a maximum of only 32 

microgametes, with each exploring 1/1,000 of the blood meal on average, in the 30 

minute window.  

 

4.3.4 Conclusions and future directions 

Given the drive to develop transmission-blocking interventions by interfering with 

the fertility of microgametes, a better understanding of the behaviour of 

microgametes is central to making interventions as “evolution-proof” as possible. 

Using high speed digital microscopy and 3D holographic reconstruction (Wilson and 

Zhang, 2012), several key physical characteristics of the microgamete of P. berghei 

were quantified (summarised in table 4.1). Some of these measurements such as the 

length, diameter, wavelength and speed were quantified in a more robust way than 

with previous attempts (Sinden, 1975, Straschil et al., 2010), and some are 
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completely novel (e.g. swimming direction, beating plane and chirality of the 

microgamete). Two key parasitological questions that emerge from this work 

concern how microgametes interact with the blood meal environment in the search 

for females:  

(i) What role do RBCs have for microgamete motility? (which is addressed 

in section 4.4)  

(ii) Do microgametes follow random paths in the blood meal? (which is 

addressed in section 4.5) 

Finally, the contribution of biology to physics in this context should not be 

underestimated. The microgamete is an ideal model system for understanding the 

axoneme on a mechanical level. The small number of components in a microgamete, 

coupled with genetic control over its structure and assembly (Straschil et al., 2010) 

allows for a rigorous test of current physical theories. In particular, the ability to 

disrupt genes responsible for the central pair of microtubules (in other words, 

producing “9+1” or “9+0” axonemes) offers the chance to resolve a longstanding 

debate about the role they play in determining flagellar waveforms, and their 

influence on the flagellar beat (Omoto et al., 1999). For example, an ortholog of the 

flagellar protein PF16 (first characterized in Chlamydomonas) in P. berghei 

(PbPF16) is crucial for flagellar motility in malaria parasites (Straschil et al., 2010). 

The majority of the PbPF16 mutant microgametes lacked at least one central 

microtubule and were either immotile or had slower swimming speeds (Straschil et 

al., 2010). Such mutant lines are ideal for identifying the role of the central pair in 

flagellar motility, compared with wild type P. berghei microgamete motility. 
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4.4   Role of parasite interactions with red blood cells during mating  

4.4.1 Introduction 

RBCs are one of the main components of blood meals, and so microgamete - RBC 

interactions (physical and chemically-mediated) are likely to be very common; both 

during exflagellation and when microgametes are freely swimming. These 

interactions and their potential consequences for microgametes and mating success 

are described below and explored in this section. 

 

To maximise their intake of RBCs without overly increasing their total mass (which 

would inhibit their capacity to fly), some mosquito species perform diuresis (anal 

excretion of fluid) during and after feeding (Vaughan et al., 1991). This has been 

demonstrated in A. gambiae and A. stephensi, which concentrate ingested RBCs by 

factors of 1.8 and 1.7, respectively (Vaughan et al., 1991), but large variations in 

these values have been found both within and between species (Chadee and Beier, 

1996). This concentration of RBCs is predicted to dramatically change the 

biophysics of the bloodmeal to a more colloidal composition and significantly 

increase the pressure due to peristaltic contraction of the midgut. Because this is 

occurring simultaneously to exflagellation and fertilisation, it may have significant 

consequences for the ability of the microgamete to navigate through the bloodmeal in 

search for a female to fertilise. RBCs are potentially a significant physical barrier to 

the navigation of microgametes through the bloodmeal. As diuresis increases the 

density of RBCs, the longer it may take males to search a given volume of blood 

meal to find female gametes to fertilise. Furthermore, some microgametes 
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themselves are excreted through diuresis (Sarah Reece, personal communication); 

thereby reducing the probability of fertilisation success even further.  

Another phenomenon commonly observed upon the initiation of gametogenesis is 

the interaction of microgametes with RBCs, other parasite infected cells, and 

emerged female gametes; both during exflagellation and once microgametes are free 

from the residual gametocyte. During exflagellation, microgametes form temporary 

but strong interactions with RBCs, in what are termed ‘exflagellation centres’ 

(Templeton et al., 1998). Whether exflagellation centres occur in the blood meal is 

yet to be examined so it is not known whether this adhesion has a requisite function, 

is a hindrance to mating success, or is simply an artefact of in vitro conditions. 

Evidence suggests against the interaction simply being an in vitro artefact, because it 

has been shown to be species specific and dependant on an interaction between the 

gamete and the negatively charged sialic acid on the surface of the RBC membrane 

(Templeton et al., 1998). Adhesion to RBC may benefit parasites by aiding 

microgamete detachment from the residual gametocyte microgametes and/or 

microgametes could use the RBC surface as a substrate to migrate through the dense 

blood meal; thereby covering more distance than by simply “swimming” through a 

bare medium (Carter and Graves, 1988). Indeed, as described in section 4.3, the 

wavelength of microgametes (5μm) matches the average diameter of murine RBCs 

(4–7μm) (Fox et al., 2006), which is a pre-requisite for an adaptation of 

microgametes to enhance motility in the blood meal using interactions with RBCs 

(Wilson et al., 2013). Similar suggestions have been proposed for the motility of 

trypanosomes (Heddergott et al., 2012). In addition, being surrounded by RBCs may 

act as a barrier to protect microgametes from transmission blocking immune factors 
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or phagocytic cells (Sinden and Smalley, 1976, Naotunne et al., Mendis et al., 1990, 

1991, Naotunne et al., 1993, Motard et al., 1993, Ramiro et al., 2011, Long et al., 

2008). 

 

Previous in vivo studies suggest that increasing the concentration of RBCs in the 

blood meal (using a range of Anopheles species with different prediuresis abilities) 

has a negative effect on P. falciparum ookinete density (Vaughan et al., 1991, Sinden 

et al., 1996). Whilst these results suggest that a high density of RBCs hinder 

fertilisation success (i.e., ‘ookinete conversion’), there are many confounding factors 

in such studies. The current data do not disentangle the effects of (a) other blood 

components and characteristics affected by diuresis (pH, glucose availability and 

immune factors), (b) simple physical- (i.e., RBCs acting as an obstacle to 

microgamete motility) or chemical- microgamete – RBC interactions (i.e. RBCs 

acting as a substrate mediated by sialic acid), or (c) adaptation/coevolution of 

parasites to only some of the vector species examined. Furthermore, the potential 

pros and cons of RBCs in the blood meal are not mutually exclusive and any 

combination could be operating. In fact, as is the case with trypanosomes 

(Heddergott et al., 2012), it may be that an intermediate density of RBCs could be 

optimal for successful exflagellation and subsequent fertilization success.  For 

example, RBCs could simultaneously provide a substrate for- (via sialic acid 

interactions) and act as an obstacle to- (as a physical barrier) microgamete motility. 

The experiments presented in this section use biocompatible particles 

(‘microparticles’) that are similar to the size, shape and hydrophillic surface of 
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murine RBCs but without the sialic acid surface coat to disentangle the consequences 

of physical and chemical interactions with RBCs for mating success.  

 

4.4.2   Methods 

4.4.2.1 Parasite preparation 

Infections of the rodent malaria parasites P. berghei WT ANKA and P. berghei 

820cl1m1cl127  (P. berghei 820) (from The University of Edinburgh’s malaria 

reagent repository http://malariaresearch.eu/) were initiated in male MF1 mice (8-10 

weeks old, from an in house supplier, The University of Edinburgh). These two lines 

(derived from the same parental line) were chosen because they are both known to 

have a high gametocyte conversion rate. The mice had been pre-treated with 

phenylhydrazine at 125 mg/kg (2 days before infection) to enhance the production of 

gametocytes (Reece et al., 2008). Eighteen independent infections (10 P. berghei 

WT ANKA and 8 P. berghei 820) were initiated with 10
7
 parasitized RBCs from 

donor mice infected with cryopreserved parasites. Exflagellation assays were 

performed on days 3, 4 and 5 post infection to verify that there was a sufficient 

density of mature, exflagellating gametocytes in the infected blood for successful 

fertilisation and culturing.  This involved culturing 2μl of tail blood in 100μl fresh 

ookinete media (RPMI + 10% foetal calf serum, pH 8) at 20
o
C and vortexing to 

stimulate gametogenesis (Janse et al., 1985). Ten minutes post initiation of this 

culture, 8μl was placed under the cover slip of a haemocytometer and the number of 

exflagellation events observed in 1/9 of the haemocytometer grid (100nl culture) was 

recorded. An exflagellation event was defined as a haphazard, rapidly moving 

parasite extruding flagella; often forming clumps (exflagellation centres) with nearby 

http://malariaresearch.eu/
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RBCs. When more than 20 exflagellation events were counted in 1/9 of a 

haemocytometer, these infections were considered suitable for culturing. Culturing 

always occurred on day 4 or 5 post infection. Thin blood smears were also taken and 

stained with giemsa on days 3, 4 and 5 post infection, and the asexual parasitaemia 

(number of parasites/RBC) and gametocytaemia recorded. In addition, RBC density 

counts were taken of the infected blood, to monitor anaemia of the mice and to allow 

calculations of parasite densities.  

 

4.4.2.2 Microgamete purification and culture 

For each mouse, blood was used to initiate cultures across seven different treatment 

groups, as detailed in table 4.2. RBC densities and blood smears were taken from all 

mice contributing to cultures.  The number of female gametocytes/ml culture was 

calculated from reading blood smears and accounting for RBC densities and culture 

conditions. Initially, two control treatment groups were set up with blood straight 

from the mouse tail. 2µl tail blood was placed into either 100µl or 20µl ookinete 

culture media (RPMI + 10% foetal calf serum, pH 8 at 21
o
C) to create cultures at a 

concentration of 2% (routine culture conditions) and 10% (high blood concentration 

culture conditions) blood (table 4.2). Both cultures were incubated at pH 8 and at 

20
o
C for 18-20 hours before a haemocytometer was used to calculate the number of 

ookinetes/ml culture. For the remaining four treatment groups, P. berghei infected 

blood was collected via  cardiac puncture from anaesthetised mice (total blood 

volume collected ranged from 0.5ml to 1.6ml) and was added to 10ml of gametocyte 

stasis media (RPMI + 5% foetal calf serum, pH 7.25, at 37
o
C). The culture was then 

immediately passed through a magnetic column (MACS LS separation columns, 
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Miltenyl Biotech) to which the heam–rich magnetic gametocytes adhered, whilst the 

serum, asexuals and uninfected RBCs cells passed though. 3ml gametocyte stasis 

media was then added to wash any remaining non – gametocyte stages (non- 

magnetic) from the column. The column was then removed from the magnet; 1ml 

ookinete media was added and immediately forced through the column to flush out 

the gametocytes into a sterile centrifuge tube. This was repeated three times, 

resulting in 3mls of purified gametocytes. The gametocytes were then spun down at 

2500rpm for 3 minutes at 37
o
C, the supernatant was removed and from the remaining 

pellet of pure gametocytes, 3µl was aliquoted into pre- prepared ookinete media 

cultures (total volume: 23µl, RPMI + 10% foetal calf serum, pH 8, 20
o
C) containing 

different ratios of microparticles : media (detailed below and in table 4.2). Tail blood 

cultures were set up from the same infections that were used for the purified 

gametocyte cultures to a) confirm that the gametocytes successfully fertilised and 

developed into ookinetes in ‘routine’ culture conditions and b) to qualitatively 

compare the effect of increasing the concentration of whole blood vs. increasing the 

density of microparticles on ookinete conversion. 

 

Four different culture conditions were prepared with increasing densities of 

biocompatible polymethyl methacrylate (PMMA) microparticles, diameter 6.33 µm 

(microParticles GmbH): 0% (no microparticle control), 1% (similar to routine culture 

conditions), 35% (similar to the host haematocrit), 60% (similar to an increased RBC 

density due to prediuresis in the mosquito midgut) (table 4.2). Pilot data showed that 

microgametes do not form exflagellation centres with these microparticles, which 

indicates that the RBC-microgamete interaction is mediated by a molecular 
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interaction with sialic acid as a specific ligand (rather than simple electrostatic 

attraction to the hydrophilic RBC coat (Templeton et al., 1998).  In high 

microparticle-density cultures, after fertilisation, ookinete development could be 

limited by a lower concentration of resources (e.g. glucose) due to a lower proportion 

of media in the culture, so this was tested for by replenishment of media after 

mating. Two hours after culture initiation (i.e., once fertilisation was complete) an 

additional 80µl ookinete media was added to half (54/108) of all cultures (across all 

treatment groups).  

 

All cultures were incubated at pH 8 and at 20
o
C for 18-20 hours before a 

haemocytometer was used to calculate the total number of ookinetes/culture.  Some 

cultures were diluted before counting to avoid missing ookinetes masked by high 

densities of microparticles. After adjusting for dilution factors, the conversion rate of 

female gametocytes to ookinetes (total ookinetes / total female gametocytes) for each 

culture was calculated, as a measure of fertilisation success, but for clarity, this is 

referred to as ‘ookinete conversion’ from here on. Any ookinete conversion values 

over 1 were removed from analysis (9/108 cultures) because this is biologically 

impossible. This was most likely to be due to the risk of underestimating female 

gametocytes in very low density populations, which is a well-known problem in 

microscopy when reading blood smears. I chose the most conservative option of 

removing these values (and therefore reducing the sample size), instead of artificially 

inflating the values of all female densities.  
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Whilst flow cytometry techniques could enable quantification of zygote densities 

post fertilisation, it is not as amenable as haemocytometry for the high-throughput 

nature of this experiment. Zygote conversion rate may be the most direct measure of 

fertilisation success, but ultimately the conversion rate of female gametocytes to 

mature ookinetes is a more accurate indicator of transmission potential. Furthermore, 

assaying ookinete conversion rates facilitated an analysis of the unexpected but 

significant and large effect of replenishing media post fertilisation for zygote 

maturation / ookinete formation.  

 

4.4.2.3 Analysis 

Data were analysed using R version 3.0.2 using Generalized linear mixed model 

(GLMM) (for the microparticle data) and linear mixed effect models, (for the blood 

data) treating each infection (mouse) as a random effect to account for 

pseuodoreplication of blood from each mouse contributing to each treatment. For the 

microparticle data, GLMMs were constructed with the binomial response variable as 

“Ookinetes per ml blood / females per ml blood” after both values had been rescaled 

(divided by 1000) in order to conform to the representable range of integers R is 

restricted to using (+/-2x10
9
). As the response variable data was strictly bounded 

(between zero and one), had non-constant variance and non-normal errors, a 

binomial error structure with a logit link function was used. For the blood culture 

data, the response variable (ookinete conversion) was log10 transformed to conform 

to the assumptions of normality. For both GLMM and LME, models were minimised 

following stepwise deletion of the least significant term and using log likelihood 
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ratio (χ
2
) tests to evaluate the change in model deviance until only significant terms 

remained in the model.  
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Table 4.2 Summary of treatment groups, sample sizes (N) and 

rationales. Half of the cultures received media replenishment (80µl fresh 

ookinete media) 2 hours after culture initiation (across all treatment groups). 

N= number of P. berghei infections. 
T

re
a
tm

e
n

t 

Density 

Volume 

Of 
culture 

Gametocyte 
sample used 

to initiate 
culture 

N 

(Strain) 

 

(WT)       (820) 

Rationale 

B
lo

o
d

 

   

2% 100µl Tail blood 8 8 

Control - routine blood 
culture. 

 

10% 

 

 

20µl Tail blood 8 8 
Medium density blood 
culture. 

M
ic

ro
p

a
rt

ic
le

s
 

0%  
Purified 
gametocytes 

10 8 

Absence of microparticles 
(~Newtonian fluid). 

 

1% 20µl 
Purified 
gametocytes 

10 8 

Microparticle density 
similar to routine blood 
culture RBC density. 

 

35% 20µl 
Purified 
gametocytes 

10 8 

Microparticle density 
similar to healthy host 
haematocrit. 

 

60% 20µl 
Purified 
gametocytes 

10 8 

Microparticle density 
similar to the increased 
density of RBCs within a 
blood meal in the 
mosquito midgut due to 
diuresis. 

 

4.4.3 Results  

4.4.3.1 Purified gametocyte and microparticle initiated cultures 

Ookinete conversion (proportion of female gametocytes that developed into mature 

ookinetes) was measured when purified P. berghei gametocytes were cultured in the 
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presence of four different densities of microparticles (treatments): 0%, 1%, 35% and 

60%. In addition, the effect of replenishing media post fertilisation on ookinete 

development to maturity was tested. Data from the two lines P. berghei 820 and P. 

berghei WT ANKA were grouped because their ookinete conversion did not differ 

significantly (line: χ
2

1, 9 = 2.786, p= 0.10). The effect of microparticle density on 

ookinete conversion was dependant on whether media was replenished post 

fertilisation (treatment*media: χ
2

3, 6= 1.3x10
5
, p<0.001) (figure 4.3). Overall, 

ookinete production was reduced by more than 80% when microparticle density was 

increased from 0% to 60%. Specifically, for media replenished cultures, mean 

ookinete conversion (95% confidence interval range) when microparticle density 

was: 0%: 0.81 (0.61-0.92), 1%: 0.65 (0.5-0.85), 35%: 0.28 (0.13-0.51), 60%: 0.12, 

(0.05-0.27) (figure 4.3).  

 

Ookinete conversion was much lower for all cultures that were not replenished with 

media and followed a similar pattern for the negative effect of increasing 

microparticle density. Mean ookinete conversion (CI range) for non-media 

replenished cultures, when microparticle density was 0%: 0.04 (0.02-0.11), 1%: 0.03 

(0.01-0.09), 35%: 0.03 (0.01-0.09), 60%: 0.01 (0.003-0.02) (figure 4.3). However, 

replenishment resulted in a larger increase in ookinete conversion at low 

microparticle densities. Specifically, when microparticle density was 60%, media 

replenishment increased the probability of ookinete conversion by 0.11, and by 0.77 

at 0% microparticle density (figure 4.3). An additional, unquantified observation was 

that in the 60% microparticle density cultures, the proportion of retort- shaped 

(immature) ookinetes was higher than in the lower density microparticle cultures.   
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Figure 4.3 Ookinete conversion when MACS purified gametocytes were 

exposed to increasing densities of microparticles in cultures in which 

media was replenished post fertilisation (white circle, solid line, n ranges from 

5 to 9) or not replenished (black circle, dotted line, n = 9). Estimated mean (± 

asymmetric binomial CI). Ookinete conversion: probability of a female 

gametocyte developing into an ookinete. 
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Figure 4.4 Ookinete conversion (log10) when gametocyte infected whole 

blood was added to cultures in which media was replenished post 

fertilisation (white circle, solid line, n = 9) or not replenished (black circle, 

dotted line, n = 6), at either 2% or 10% blood density. Mean (± SEM). 

Ookinete conversion: probability of a female gametocyte developing into an 

ookinete.  

 

4.4.3.2 Whole blood initiated cultures 

Ookinete conversion was measured when P. berghei infected whole blood (from the 

same infections used to initiate the purified gametocyte cultures (4.4.3.1)) was 

cultured at two different concentrations of blood in media (treatments): 2% and 10%. 

This was to check that gametocytes successfully fertilised and developed into 

ookinetes in ‘routine’ tail-blood culture conditions (2%), and to qualitatively 
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compare the effect of increasing the concentration of whole blood vs increasing the 

density of microparticles on ookinete conversion. Again, the effect of replenishing 

media post fertilisation on ookinete development was investigated. There was no 

significant difference in ookinete conversion between the two parasite lines (P. 

berghei 820 and P. berghei WT ANKA) (line: χ
 2

1, 7 = 0.27, p= 0.60), so the data 

from the two lines were combined.  

 

Ookinete conversion was higher in media replenished cultures and the effect of blood 

concentration depended on whether media was replenished or not (treatment*media: 

χ
2

1, 5 = 6.11, p= 0.01) (figure 4.4). When media was replenished ookinete conversion 

was similar at 2% (mean: 0.18 ± 0.13 ookinetes/female) and 10% blood cultures 

(mean: 0.19 ± 0.13 ookinetes/female). When media was not replenished post 

fertilisation, ookinete conversion was also similar in 10% (mean: 0.02 ± 0.05 

ookinetes/female) and 2% blood cultures (mean: 0.03 ± 0.07 ookinetes/female) 

(figure 4.4).   

  

4.4.4 Discussion 

The experiments presented here reveal that increasing microparticle density from 0% 

to 60% reduced ookinete conversion of purified P. berghei by >80%. Furthermore, 

when media was replenished post fertilisation, ookinete conversion for all 

microparticle densities was increased, but the magnitude of the effect decreased as 

microparticle density increased. Increasing the concentration of blood in cultures 

(from 2 to 10%) produced a similar reduction in ookinete conversion, but only when 

media was not replenished.  
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4.4.4.1 Effect of microparticle and blood density on fertilisation 

success  

Whilst the proportion of female gametocytes that develop into mature ookinetes is 

reduced when microparticle density is increased, whether microgametes or female 

gametes were affected is unknown. This would be very hard to test, because it is not 

possible to target only one sex during fertilisation. However, the most parsimonious 

explanation is that the increase in microparticle density resulted in physical barriers 

to microgamete movement. If this is true, and if microparticles do accurately mimic 

the effect of RBCs in the blood meal, this suggests that a high density of RBCs 

hinders mating, which is simply a constraint that natural selection cannot overcome. 

An alternative explanation could be that the microparticle environment did not 

accurately represent the mosquito bloodmeal environment. The exact composition of 

blood within the mosquito midgut remains unknown, because it is not yet possible to 

observe internal processes within the mosquito. Bloodmeal structure could vary from 

a clotted mass (as observed when mosquitoes are dissected and exposed to air), to a 

single cell suspension (similar to the microparticle environment that was tested here). 

Future work could involve utilising sophisticated imaging techniques optimised for 

within –host processes (Frischknecht et al., 2004) to elucidate bloodmeal 

composition. Indeed, if it does more closely resemble a clotted mass, further work 

could involve testing fertilisation success at different densities of matrigel (as used in 

Trager and Williams (1992).  
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The observation that ookinetes were less well developed (‘retort’- shaped (Gass, 

1979)) in cultures where the microparticle density was highest (60%) suggests that 

RBCs hinder mating. Retorts may have been a result of resource limitation and/or a 

delay to mating leading to a delay in zygote formation and ookinete formation. In 

turn, this may have been a result of microgametes spending longer navigating around 

a higher density of microparticles to find females. Resource limitation can be ruled 

out because retorts were observed even when media was replenished post 

fertilisation. Nevertheless, an alternative explanation for the presence of retort 

shaped ookinetes could be that the presence of microparticles at 60% caused 

ookinetes to arrest during their development. Time course analyses (investigating 

whether the retort shaped ookinetes eventually developed into mature ookinetes after 

~ 2 more hours in culture) is necessary to explicitly test this. 

 

Furthermore, that the highest ookinete conversion rates occurred in 0% microparticle 

cultures (0.81 (CI range: 0.61-0.92), ookinetes/female) suggests that RBC-

microgamete interactions (mediated by sialic acid adhesion) do not have a large, if 

any, effect on mating success by facilitating microgamete detachment from the 

residual gametocyte (Templeton et al., 1998).  Testing the effect of coating the 

microparticles in sialic acid on ookinete conversion could resolve whether sialic acid 

plays any role in mating. In addition, investigating whether there is any role of 

heparin and heparan sulphate (which are involved in merozoite invasion of RBCs 

and sporozoite invasion of salivary glands (Atkinson et al., 2012)) during 

exflagellation and fertilisation may provide alternative explanations for the RBC-

microgamete interactions.  
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An alternative explanation for the reduction in fertilisation success as microparticle 

density increases is that microgametes were nutrient limited at high microparticle 

densities. To keep the culture volume constant (to avoid confounding the effect of 

microparticles on fertilisation success with different culture volumes) the media 

component of cultures decreased as microparticle density increased. Glucose 

transport is thought to be essential for micro gametogenesis: proteomic analysis 

indicates that glycolysis provides the power for microgamete motility (Khan et al., 

2005), and the hexose transporter has been shown to play an essential role in 

utilizing the environmental glucose supply (Nijhout and Carter, 1978, Slavic et al., 

2010, Talman, 2010, Slavic et al., 2011). However, even in cultures at the highest 

microparticle concentration (60%), the concentration of glucose was 4mM. Previous 

exflagellation studies found no difference in exflagellation intensity between cultures 

at glucose concentrations ranging from 1.5mM to 10mM (Slavic et al., 2011). 

Therefore glucose limitation can be ruled out as a cause for the reduction in 

fertilisation success. This is not surprising, because glucose concentrations within the 

bloodmeal are likely to be much lower than those used in in vitro experiments, so 

microgametes should have evolved to cope with low glucose concentrations. 

 

As observed in the microparticle data, ookinete conversion was reduced when blood 

concentration was increased. However, in contrast to the microparticle data, this was 

only observed in the non-media replenished cultures. Delayed fertilisation as an 

explanation for higher ookinete conversion in media replenished cultures vs non 
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media replenished cultures can be ruled out because within each microparticle 

density treatment, there were no more retort- shaped ookinetes in non-replenished 

than replenished cultures. Thus, media replenishment does not affect mating success 

(because replenishment occurred post fertilisation) but does affect the ability of 

zygotes to transform into ookinetes. Therefore, the replenished groups give a more 

accurate picture of fertilisation success whereas the non-replenished groups 

demonstrate the influence of the environment on subsequent ookinete development. 

In this case, there is no influence of increasing blood concentration from 2 to 10% on 

mating success. This is not surprising because the difference between 2 and 10% 

blood is relatively small, and still at a much lower density than in the mosquito 

midgut during a blood meal (Vaughan et al., 1991, Templeton et al., 1999). 

Investigating the effect of RBC concentration is important, but is complicated 

because blood contains RBC, immune factors, and resources that can affect mating 

and ookinete development in many different ways (Baton and Ranford-Cartwright, 

2005, Ramiro et al., 2011). Nevertheless, for this study, the data for the media 

replenished microparticle data are the best conditions in which to test how the 

physical conditions in a viscous bloodmeal influence mating success. 

 

4.4.4.2 Media replenishment 

For all microparticle and blood densities, the proportion of female gametocytes that 

developed into ookinetes was higher when media was replenished post fertilisation. 

Furthermore, the increase in ookinete conversion was greatest at low microparticle 

and blood densities, suggesting that when ookinetes are at high densities, their 

development is limited by environmental factors. Identifying the reasons for a 
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density dependant effect of media replenishment requires further work. Whist the 

need for more resources when ookinete density is high is the most obvious 

explanation, it is unlikely that glucose is limiting. Increasing glucose concentration 

(from 1.5 to 22mM has no effect on post fertilisation ookinete development) (Slavic 

et al., 2011), and the glucose concentrations in this experiment (which ranged from 

4mM in 60% microparticle cultures to 10mM in 0% microparticle cultures) fall well 

within this range. Another explanation could be that media-replenishment dilutes 

host derived immune factors (Ramiro et al., 2011) (although the majority of immune 

factors would have been removed during the gametocyte purification process), and/ 

or waste metabolites (although very little is known about this).  

 

4.4.4.3 Conclusions and future directions 

 Whilst the negative effect of microparticles on ookinete conversion rates is clear, 

translating this to the impact of RBC density is more difficult. Understanding the 

impact of RBC density on transmission success matters, not only in relation to the 

effect of host anaemia on mating success, but it is also increasingly important given 

the number of vector species (with different diuresis capacities) that are able to 

transmit malaria. For example, vector control measures may cause parasites to 

encounter novel vector species (as is occurring due to insecticide use) (Bayoh et al., 

2010) with different diuresis behaviours (up to 55% of the fluid ingested can be 

excreted (Clements, 1992)); thus, different packing densities of RBCs could affect 

transmission.   
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The effect of media replenishment has implications for future experiments that 

require high densities of ookinetes in vitro. Currently, routine culture conditions are 

represented by the 2% blood, non-media-replenished treatment in this study. The 

mean ookinete conversion rate for this method (0.03 ± 0.07 ookinetes / female) is 

much lower than what can be achieved using purified gametocytes (up to 0.82 (CI 

range: 0.61-0.92) ookinetes/female).  
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4.5   Directional microgamete movement 

4.5.1 Introduction 

The data presented in sections 4.3 and 4.4 provide support for the hypothesis that 

microgametes and female gametes do not meet simply by chance. Section 4.3 

suggests that even if microgametes travel at their maximum possible speed (50μm/s), 

a single microgamete could only explore 1/1,000 of a 2μl blood meal in the 30 

minute window that fertilisation can occur. Section 4.4 suggests that ecologically 

realistic RBC densities are likely to slow microgamete motility down and reduce the 

volume searched by each microgamete. Furthermore, host derived immune factors in 

the blood meal also interfere with microgamete motility. Given that mating clearly 

does happen, even when small numbers of gametocytes are taken up in a blood meal, 

the existence of a mechanism to facilitate microgametes in the search for female 

gametes is likely.  

 

Three mechanisms that may facilitate encounters between microgametes and female 

gametes include (but are not limited to) i) microgamete interactions with RBCs 

increasing swimming speed (as suggested for trypanosomes (Heddergott et al., 

2012)); ii) gametocyte aggregation in the peripheral circulation of the vertebrate host 

maximizes the density and proximity of male and female gametocytes in the blood 

meals of vectors that become infected (Pichon et al., 2000, Gaillard et al., 2003), iii) 

microgametes navigate the blood meal non-randomly by using chemotaxis 

(Eisenbach, 2007) and / or nanotube-like filaments of gametes (FiGs) (Rupp et al., 

2011, Kuehn and Pradel, 2010) to locate female gametes. Data from section 4.4 

suggest that it is unlikely that microgametes benefit from physical interactions with 
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RBCs, and hypothesis ii) is unlikely to evolve because it would trade off against the 

reduced probability of mosquitoes picking up parasites to get infected. However, the 

latter option iii) is perhaps the most likely, as mechanisms such as chemotaxis are 

ubiquitous across eukaryotic flagella (Eisenbach, 1996). Whilst there is no direct 

evidence for malaria chemotaxis to-date, filamentous protrusions (FiG) on the 

surface of P. falciparum activated gametocytes and gametes of both sexes have been 

observed. These protrusions form immediately upon activation and may establish 

long-distance (> 100μm) contacts between gametes (Rupp et al., 2011). FiGs exhibit 

adhesion proteins on their surface which may be a mechanism to locate and connect 

activated gametocytes and gametes within the bloodmeal (Rupp et al., 2011). 

However, due to the very low gametocyte densities in natural malaria-infected blood 

meals (see section 4.3 for calculations), an additional mechanism such as chemotaxis 

is likely to be required to attract microgametes towards the 100µm circumference 

around female gametes, before FiGs can act to adhere the gametes and facilitate 

fertilisation. Further support for the existence of a female gametocyte-derived 

chemotactic gradient, and / or nanotube – mediated mechanisms comes from the 

observation that host derived monocytes and neutrophils appear to migrate distances 

in excess of 40µm towards female gametocytes upon ingestion by the mosquito 

(Sinden and Smalley, 1976). If phagocytic cells can direct their movement towards 

female gametes, it seems plausible that microgametes could too. Furthermore, 

detecting chemotaxis gradients could be facilitated by the motility parameters 

outlined in section 4.3 where microgametes travel in the direction of their “active 

end”, and their ability to swim in reverse may maximize the likelihood of detecting 

and following a chemotaxis gradient (Wilson et al., 2013). Whilst the ability to detect 
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and follow chemotactic gradients may seem unlikely for the simple-structured 

microgamete, malaria parasites are known to employ complex behaviours and 

flexible (plastic) strategies for survival and reproduction in changing environmental 

conditions (chapters 2 and 3). Due to its simple structure (section 4.3), microgametes 

are unlikely to have chemotaxis receptors (and none have been identified to date), 

however, chemotaxis-like behaviour is thought to be possible in the absence of 

chemotaxis receptors, for example, if cells are forced to swim more slowly in some 

regions than in others (Cates, 2012).  

 

4.5.2 Methods  

Microgametes were observed when exposed to female gamete material vs non- 

female gamete material. Specifically, the experiment tested whether microgametes 

preferentially aggregate in zones of live female gametes, and/or lysed female 

gametes, when compared to live asexuals, lysed asexuals, or uninfected RBCs.  

 

4.5.2.1 Microgamete preparation and experimental design 

Infections of P. berghei WT ANKA (from The University of Edinburgh’s malaria 

reagent repository http://malariaresearch.eu/) were used to prepare parasite material 

at a sufficient density for the assays, following the protocols outlined in section 

4.4.2.1. On day 4 or 5 post infection (when the density of exflagellation was judged 

sufficient) tail blood was taken from 13 independent infections and microgametes 

were purified from this blood (as described in section 4.5.2.3). The purified 

microgametes were aliquoted and exposed to 5 different treatments (“cues”; table 

4.3). The aim of the experiment was to test whether microgametes aggregate in the 

http://malariaresearch.eu/


 

121 

vicinity of the cue treatment material. Five different cues were prepared (table 4.3); 

uninfected RBCs (to act as a control cue and to test whether microgametes are 

attracted to a group of cells, regardless of its composition); live asexuals (a control 

cue of live parasites); lysed asexuals (a control cue of material liberated from lysed 

parasites); live female gametes (to test if microgametes are attracted to live female 

gametes); and lysed female gametes (to test if microgametes are attracted to material 

liberated from lysed female gametes three hours after activation). The experiment 

was designed so that the responses to all cues could be compared to each other, and 

so that some cues could be combined to test for general responses to female material 

vs control material by grouping treatments according to the classifications outlined in 

table 4.3. RBC densities and blood smears were taken from all mice contributing 

microgametes.  The change in microgamete position when exposed to each treatment 

was examined over 20 minutes (as described in section 4.5.2.3 and illustrated in 

figure 4.5).  
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Table 4.3 Summary of treatment groups, sample sizes, rationales, and 

classification. The analysis involved comparing the effect of individual 

interface treatments as well as comparing treatments grouped into ‘control’ 

vs ‘female’ on microgamete density. N = number of independent infections 

that provided microgametes to test a particular treatment. All 13 mice did not 

contribute to all treatments due to a lack of treatment material on some assay 

days.    

Treatment N Rationale Classification 

Uninfected 

RBC 
10 

Control interface. To test whether 

microgametes are attracted to a zone of 

cells, regardless of its composition 

Control 

Live 

asexuals  
13 

Control for live females. Purified 

asexual- stages in ookinete media.  

Control 

Lysed 

asexuals 
12 

Control for attraction to lysed material 

liberated from parasites. Asexual–stage 

parasites were cultured in ookinete 

media for 3 hours before lysis (to match 

conditions used to prepare the lysed 

female treatment group).  

Control 

Live 

females 
9 

To test if microgametes are attracted to 

live female gametes. Purified female 

gametes in ookinete media. 

Female 

Lysed 

females 
10 

To test if microgametes are attracted to 

material liberated from lysed females. 

Female gametes were cultured in 

ookinete media for 3 hours to allow for 

the production and secretion of any 

potential chemotactic cues as well as all 

other cell contents, before being lysed. 

Female 
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4.5.2.2 Preparation of treatments 

Each ‘live’ treatment was freshly prepared on the same day of the assay and lysed 

cues were prepared in advance. All cues were prepared as follows: 

 

4.5.2.2.1 Uninfected RBCs (RBC):  

20μl uninfected blood was collected from the tail of a naive mouse and placed in 

20µl ookinete media. This was then centrifuged at 10,000rpm for 2 minutes and the 

supernatant (serum) was removed; leaving uninfected RBCs only. These uninfected 

RBCs were added to slides for assaying, as described below. 

 

4.5.2.2.2 Live female gametes and live asexuals: 

On day 4 or 5 post infection, 0.5 to 1.6ml blood was collected from P. berghei 

infected mice by cardiac puncture from anaesthetised mice and added to 10ml of 

ookinete media at 20
o
C for 20 minutes to exflagellate (and to ensure that the 

microgametes could be separated from females). This culture was then passed 

through a magnetic column (MACS, Miltenyl Biotech) to which the female gametes 

and any remaining non – activated male gametocytes adhered. Three x 3ml washes 

of ookinete media were then passed through the column to wash the non-magnetic 

uninfected RBCs and asexual stage parasites out, along with microgametes. This 

flow through was collected and spun down at 10000rpm for 2 minutes. The 

supernatant (serum and media) was removed; leaving the pellet of asexual and 

uninfected RBCs, which formed the ‘live asexual’ treatment group, as described in 

table 4.3. Aliquots of this pellet were also taken to prepare the ‘lysed asexuals’ 
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treatment group as described below. After the last wash through the column, it was 

removed from the magnet and 1ml ookinete media was added and immediately 

forced (via a plunger) through the column to flush out the activated female gametes 

and gametocytes into a clean centrifuge tube. This was repeated three times; 

resulting in 3mls of female culture. This was spun down in a centrifuge at 2500rpm 

for 3 minutes at 37
o
C. The supernatant was removed and the remaining pellet of pure 

female gametes was resuspended in 1ml of ookinete media containing aphidicolin 

(Sigma-Aldrich, UK) at a concentration of 5 x 10
-4

M, and incubated at 21
o
C for 10

 

minutes. Aphidicolin was used to irreversibly inactivate any remaining male 

gametocytes (and prevent microgamete formation) that may have been present 

(Ramiro et al., 2011). The culture was spun again and the pellet washed with 

ookinete media to remove the aphidicolin. Thus, the pellet contained a high density 

of purified and activated female gametes which was confirmed by smears. The 

females were then aliquoted into two tubes; one for immediate use for the ‘live 

female’ treatment assay, and the second to form the ‘lysed female’ treatment. This 

second tube was incubated at 20
o
C for 3 hours to allow the female gametes to 

produce and release any potential chemotactic cues into the pellet before further 

aliquots were made to prepare the ‘lysed females’ treatment group, as described 

below.  

 

4.5.2.2.3 Lysed females and asexuals 

Aliquots of pure live female gametes or asexuals (prepared as described above) were 

lysed via three rounds of freeze thaw at -80
o
C and 37

o
C. This method has been 

shown to completely lyse parasite infected RBCs (see section 3.3.2 (Carter et al., 
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2014)). These preparations were then frozen at -80
o
C before being used in the 

experiment.  

 

4.5.2.3 Chamber preparation and assay set up  

Glass chambers were constructed based on advice from Laurence Wilson (The 

Rowland Institute, Harvard University) to create an assay environment without 

‘flow’, which means that any microgamete movement that is observed would be due 

to Brownian motion and their own motility. Glass slides and cover slips were 

arranged as detailed in figure 4.5 and optical adhesive (Norland) fixed by UV light 

was used to secure the coverslips in position.  

 

For each assay, microgametes were isolated from infected blood according to the 

following method. 20µl blood was taken from the tail of a mouse and placed into 

20µl ookinete media (RPMI + 10% foetal calf serum, pH 8, 20
o
C) for 20 minutes (to 

allow sufficient time for the activation of male gametocytes, exflagellation and 

release of microgametes), and then spun down at 2000 rpm for 1 minute, to produce 

a supernatant containing purified microgametes. 7µl of the supernatant was placed in 

the chamber, immediately followed by 2µl of the treatment material (detailed in table 

4.3). The set-up is detailed in figure 4.5. 
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Figure 4.5 Chamber design and assay set up. Three coverslips (1 large, 

rectangular and 2 small and square) were fixed on to each slide to create a 

chamber at the centre. For each assay, 7µl isolated microgametes was 

placed into the chamber, followed immediately by 2µl of the treatment to 

create an interface between male gametes and the treatment. “A” represents 

the area counted for the away location, and “I” for the interface location. (i) 

View from above, (ii) view from the side (not to scale). 

 

The number of microgametes/field (microgamete density) for ‘time = 0’ was 

recorded immediately upon placing microgametes on the slide at two locations: the 

interface (“I”) with the cue treatment and as far away (“A”) from the interface as 

possible (at least 12.5mm). The location counted first was randomly selected and 

counting in each location was limited to duration of 3 minutes. For the t=0 time 

point, counts were taken over a range of 0-6 minutes post assay initiation. Twenty to 

26 minutes after adding microgametes to the slide, microgamete density counts were 

taken again at both locations, starting with the same location that the t=0 counts were 

taken first. 
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For example, for assay X, microgamete density was counted at the interface with the 

treatment (I) from 0-3 minutes, and away from the interface (A) from 3-6 minutes, 

then from 20-23 minutes post assay initiation, microgamete density was counted at 

(I), and then (A) from 23-26 minutes.  The 20 minute time period (covering the 20 – 

40 minute period after gametogenesis was initiated) was chosen because 

microgametes have approximately 30 minutes between being taken up in a 

bloodmeal and for fertilisation to occur (Carter and Nijhout, 1977, Sinden et al., 

2010). The probability of any particles (cue material/cells) placed at the interface 

diffusing into the ‘away location’ during the 20 minutes between t=0 and t=20 counts 

was calculated to be less than 6 x 10
-13

 (appendix equation 1).  Calculations assumed 

typical molecular diffusivity, ignored any edge effects, and assumed that distance 

along the chamber is the only relevant quantity (i.e., concentration is constant as a 

function of channel width and height). These assumptions were based on advice from 

Laurence Wilson (The Rowland Institute, Harvard University), and standard 

diffusion theory (Fick, 1855) (see appendix equation 1 for details of the diffusion 

probability calculation). 

 

4.5.2.4 Analysis  

Microgametes were evenly distributed across the chamber for all treatments at the 

start of all assays (appendix figure 2). Given this, it would have been possible simply 

to analyse differences in the microgamete densities at the interface (I) over time. 

However, instead, a generalised linear mixed model (GLMM) was fitted. Data were 

analysed using R version 3.0.2 and the package ‘lme4’. The GLMM tested whether 
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there were any differences between treatments in the proportion of microgametes at 

the interface over 20 minutes in order to a) account for any other potential changes in 

the chamber environment over time, b) to make full use of all the data collected and 

c) allow the use of a binomial error structure to weight the analysis based on the 

density of microgametes observed at the start of the assay. GLMMs were constructed 

with the response variable as the proportion of the total microgametes at the interface 

(Imd / (Imd+Amd)), where ‘Imd’ is the microgamete density at the interface and ‘Amd’ is 

the microgamete density away from the interface. As the response variable data was 

strictly bounded (between zero and one), had non-constant variance and non-normal 

errors, a binomial error structure with a logit link function was used. Explanatory 

variables included the assay time (either t=0, or t=20) and the cue interface 

treatment. All models included ‘infection ID’ as a random effect to account for 

repeated measures from infections from the same mouse, thereby avoiding 

pseudoreplication. Models were minimised following stepwise deletion of the least 

significant term and using log likelihood ratio tests (χ
2
) to evaluate the change in 

model deviance, until only significant terms remained in the model. All 13 mice did 

not contribute to all treatments due to a lack of treatment material on some assay 

days due to problems with purification.   

 

4.5.3 Results 

The aim of the experiment was to test whether microgametes preferentially move 

towards (aggregate) at an interface (I; treatments) of live female gametes, and/or 

lysed female gametes, when compared to live asexuals, lysed asexuals, or uninfected 

RBCs. There was no overall effect of treatment, so treatment groups were collapsed 
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as follows to simplify the model: There was no significant difference in the 

proportion of microgametes at the interface when it consisted of live female gametes 

vs lysed females (χ
 2

2,9=0.194, p= 0.907). Likewise, the proportion of microgametes 

at interfaces of live asexuals and lysed asexuals were not significantly different (χ
 2

2, 

7=2.326, p=0.313). Therefore, treatments were grouped into three categories: 

“RBCs”, “asexuals” and “females.”  Further model simplification found no 

significant difference in the proportion of microgametes at the control interfaces of 

“RBC’s” vs “asexuals” (χ
2

2, 5=1.814, p=0.404) and so treatments were grouped into 

two categories: “control” (RBCs, live asexuals and lysed asexuals) and “female” 

(live and lysed). When the proportions of microgametes at “female” and “control” 

interfaces were compared there was a borderline significant interaction between 

treatment and time (χ
 2

1, 5=3.83, p= 0.051) (figure 4.6). Specifically, after 20 minutes, 

the proportion of microgametes at the interface with female material increased by 

10%, from 0.505 ± 0.11  to 0.563 ± 0.11, and reduced by 7% at the interface with the 

control material (start: 0.490 ± 0.08, end: 0.460 ± 0.08). 
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Figure 4.6 Change in microgamete density over time. The mean 

proportion of microgametes (± asymmetric 95% Confidence interval) at the 

interface with either a control treatment (RBC and asexual stage material: 

solid line) or female material (a mixture of live female gametes and lysed 

female gametes: dashed line) at the start of the assay (Start: time = 0-6 

minutes) or after 20 – 26 minutes in the chamber (End).  
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4.5.4 Discussion 

The aim of this experiment was to test whether exposing microgametes to material 

from various isolated components of the blood meal (live female gametes, lysed 

female gametes, live asexual parasites, lysed asexual parasites, or uninfected RBCs) 

had any effect on the direction of their movement. The density of microgametes at an 

interface with female material increased by 10% over a 20 minute period, compared 

to a 7% decrease when exposed to control (RBC and asexual stages) material. Whilst 

the effect is relatively small and of borderline significance, it is consistent with 

predictions that microgametes are attracted to female gametes and suggests that 

microgametes non-randomly search the blood meal to find female gametes.  

 

Microgametes could be attracted to a gradient of chemoattractant released by the 

activated female gametes (“chemotaxis”), in a similar mechanism to bacterial food 

searching (Eisenbach, 1996). Chemotaxis has been observed in many other 

‘externally fertilizing’ systems, such as marine invertebrates where sperm are guided 

toward eggs by their secretions (Zimmer and Riffell, 2011). Whilst these results are 

not a conclusive demonstration of the existence of a mechanism that facilitates 

fertilisation, it does suggest that the process by which microgametes find females is 

not completely random. In order to definitively identify whether chemotaxis is 

involved, a choice experiment is required; simultaneously exposing microgametes to 

two interfaces: female material and control material and assaying the change in 

microgamete density at each interface over several time points. Extending the assay 

time beyond 20 minutes post initiation may provide more insight (and perhaps 
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increase the effect size observed), as my observations suggest microgametes may 

continue swimming for one hour post initiation.  

 

Another important consideration is that it is difficult to know how the concentration 

of treatments within the chambers compares to a natural blood meal, especially as the 

dilution and removal of any potential chemo-attractants during female material 

preparation is likely. Intuitively, due to the time- sensitive nature of exflagellation 

and fertilisation, female-derived chemo-attractants are most likely to be released 

immediately upon egress of the female gamete from the residual gametocyte. Gamete 

egress is known to be facilitated by a local increase in Ca
2+

, activation of calcium 

dependant protein kinases and the localisation of osmiophilic bodies at the plasma 

membrane (Billker et al., 2008, Olivieri et al., 2014). Osmiophilic bodies release 

their contents upon emergence and are virtually non-existent once the female 

gametocyte has differentiated into the gamete (De Koning-Ward et al., 2008). In this 

study, the contents of osmiophilic bodies may have been degraded during 

purification and / or lysis of cue material. The cue treatments were designed simply 

to test whether microgamete responses could be elicited, rather than to identify 

precisely what they are detecting. It is possible that the female material did contain a 

chemoattractant, but there may have been other components within the material that 

overrode the chemoattractant stimulus (e.g., lysed RBCs), which may explain the 

responses detected.  Identifying whether a chemo-attractant is released from 

osmiophilic bodies (or simply whether osmiophilic bodies are involved) could be 

facilitated by comparing microgamete motility at interfaces with activated wild type 

female gametocytes and Pfg377-KO female gametocytes which lack the full 
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complement of osmiophilic bodies (De Koning-Ward et al., 2008). Similarly, testing 

the effect of different Ca
2+

 concentrations (at an interface) on microgamete motility 

could provide clues as to whether microgametes use Ca
2+ 

as a cue for the presence of 

activated female gametes.  

 

In addition to chemotaxis, another potential mechanism that facilitates mating 

success is the presence of a compound that changes the motility (i.e. speed, 

swimming direction, amplitude, wavelength, or beating pattern) of microgametes in 

a non-vectorial manner; i.e., unlike chemotaxis (“chemokinesis”) (Petrie et al., 

2009). For example, variable glucose concentrations have been shown to affect 

microgamete motility (Talman et al., 2014). Clarification on whether chemokinesis is 

involved is not possible from the assays described above (because it would not be 

expected to result in an aggregation of gametes at an interface), but instead, should 

be available following the holographic reconstruction and comparison of 

microgamete motility (specifically swimming direction, speed, wavelength and 

beating pattern) in the presence of different factors that may affect microgamete 

motility (e.g., different concentrations of glucose, Ca
2+

, or live, activated female 

gametocytes (Billker et al., 2008, Olivieri et al., 2014, Talman et al., 2014)), as an 

extension of the work presented in section 4.3.  

 

If chemotaxis, chemokinesis and / or nanotube-like filaments of gametes (FiGs) (see 

section 4.5.1) (Rupp et al., 2011, Kuehn and Pradel, 2010) can be definitively 

demonstrated as mechanisms that facilitate mating, one future question would be to 
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ask how species –specific the strategies are?  For example, are P. berghei 

microgametes attracted to female gametes of another species (e.g. P. yoelii), and vice 

versa? Data from sperm studies in other organisms suggest this would be unlikely, 

because chemotaxis (for example) has been shown to be highly dose dependant and 

species specific (Zimmer and Riffell, 2011). Nevertheless, examining whether these 

mechanisms play a role in facilitating fertilisation would open up several new lines 

of investigation for identifying transmission blocking interventions targeting chemo-

attractants. For example, the egg-derived tryptophan signal to attract male sea urchin 

sperm is relatively easily extinguished by the addition of the enzyme tryptophanase 

(Zimmer and Riffell, 2011). If a putative malaria female gamete / gametocyte 

chemo-attractant can be identified, then one definitive test would be to observe the 

effect of inhibiting the chemo-attractant on microgamete motility. Finally, ‘optical 

tweezers’ are one possible tool that could be used to measure the force of attraction 

between isolated microgametes and female gametes (Altindal et al., 2011). Advances 

in microscopy and microfabrication, often originating from physics laboratories, are 

ideally suited to addressing these questions. 
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5 Linking gametogenesis activating factors and reproductive success 

5.1 Summary  

Sexual differentiation is crucial in the transmission of malaria parasites through the 

mosquito vector, but how this process is initiated is unclear. When ingested by a 

mosquito, gametocytes rapidly differentiate into male and female gametes in a 

process called gametogenesis. Developing drugs and/or vaccines that prevent 

transmission by disrupting this process are major goals of biomedicine, but 

understanding the environmental factors that are involved in initiating gametogenesis 

is essential for any intervention to be sustainable. A number of gametocyte activating 

factors (GAFs) have been identified in vitro (e.g., lower temperatures and a rise in 

pH), but factors experienced by parasites in vivo are less clear. Several tryptophan 

metabolites (in particular, Xanthurenic acid, XA and Kynurenic acid, KA) have been 

implicated as natural GAFs, but the source of GAFs, the identification of their 

receptors and the mechanism by which they reach the bloodmeal remain unresolved. 

There are discrepancies across the literature in the extent to which putative GAFs 

trigger exflagellation in different species and subspecies. Furthermore, the knock-on 

implications of GAFs (e.g., on ookinete development) have not been explicitly tested 

in controlled conditions. Here, P. berghei gametocytes were cultured over a wider 

concentration range of XA and KA than previously tested, and tryptophan itself was 

tested for the first time. By following each independent culture from exflagellation 

(male gametogenesis) to ookinetes, the experiments directly connected gametocyte 

activation and reproductive success (ookinete yield: ookinete density / exflagellation 

density) for the first time. The data reveal significant variation in exflagellation and 

ookinete yields when exposed to XA, KA and tryptophan, as well as highlighting the 
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importance of pH. Finally, variation in responses to GAFs across species (P. berghei 

vs. P. yoelii) as well as genetic variation between three subspecies of P. yoelii was 

observed. 

5.2 Introduction  

When a mosquito takes a bloodmeal from a malaria-infected host, gametocytes are 

immediately activated and the process of gametogenesis is initiated. After emergence 

from the RBC, male gametocytes undergo three rounds of DNA replication and 

construct flagella; forming up to eight microgametes which emerge after 10-20mins 

in a process called exflagellation (see chapter 4, section 4.1 for details) (Sinden et al., 

2010). In contrast, female gametocytes simply emerge from the RBC, in a process 

mediated by osmiophilic bodies (De Koning-Ward et al., 2008). Although the 

production of microgametes involves activation of a calcium signaling pathway via 

calcium dependant protein kinase 4 (cDPK4), cGMP-dependent protein kinase 

(PKG), phospholipase C and inositol (1, 4, 5) triphosphate (IP3) (Kawamoto et al., 

1990, Martin et al., 1994, Billker et al., 2004, McRobert et al., 2008, Raabe et al., 

2011), the primary environmental trigger(s) for gametogenesis remain unclear. 

 

5.2.1 Gametocyte activating factors 

To avoid initiation of gametogenesis within the host (which would waste crucial 

resources invested into transmission and stimulate the host to produce transmission 

blocking immune factors (Mendis et al., 1990, Naotunne et al., 1991, Naotunne et al., 

1993,)), gametocytes must possess an environmental sensing mechanism to 

recognise when they have moved from the host environment to the mosquito. The 

nature of these triggers are poorly understood, though, given the short time period in 
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which they have available to mate, it is likely that gametocytes use obvious cues 

(“gametocyte activating factors: GAF”), and are highly sensitive to them. The most 

obvious GAF is the drop in temperature by 5 - 17
o
C (from the host to the mosquito, 

or in vitro culture), which is sufficient to induce a low level of exflagellation (Baton 

and Ranford-Cartwright, 2005). However, exflagellation is significantly increased by 

the addition of one, or a combination of the following factors: a fall in carbon 

dioxide tension as the blood equilibrates with the atmosphere, thereby increasing the 

pH (Carter and Nijhout, 1977); setting the pH of culture media to 8 (Billker et al., 

1997); and the addition of sodium bicarbonate to the culture media (Butcher et al., 

1996). Nevertheless, the relative importance of each of these factors in triggering 

exflagellation and their relevance to natural infections remains unclear (Arai et al., 

2001). 

 

Whilst creating a pH8 environment is convenient for inducing exflagellation in 

laboratory experiments, a pH change is not thought to play any significant role as a 

natural GAF for the following reasons. The pH of uninfected mouse blood does not 

change dramatically between the host (pH 7.3 - 7.4) to the mosquito blood meal (7.4 

– 7.7) (Billker et al., 2000), but when infected with P. berghei, blood is significantly 

lower than pH 7.3 (Chang et al., 2001), and so the cause behind the pH of infected 

blood in the vector is unclear. Furthermore, pH changes have unknown consequences 

for subsequent ookinete development. During the search for GAFs that are relevant 

in vivo, Xanthurenic acid (XA) (and similarly structured compounds within the 

tryptophan metabolism pathway) have been implicated (Billker et al., 1998, Garcia et 
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al., 1998). In addition to XA there is likely to be at least one more GAF, and it is 

most likely to be derived from the host (Arai et al., 2001).  

 

5.2.2 The tryptophan metabolism pathway 

In mammals, tryptophan is an essential amino acid required for protein synthesis as 

well as a biochemical precursor for a range of compounds including 

neurotransmitters such as serotonin, kynurenic acid (KA) and XA (figure 5.1 

summarises the tryptophan metabolism pathway). KA and XA result from the 

oxidation of kynurenine or 3-hydroxykynurenine (3-HK) by kynurenine 

aminotransferase (KAT) (Schwarcz et al., 2012). Whilst a definitive role for XA as a 

neurotransmitter is yet to be defined, KA acts as an antagonist to prevent 

overstimulation of the central nervous system (Schwarcz et al., 2012, Han et al., 

2007). In the mosquito, 3-HK is readily oxidised to produce reactive radical species 

which can accumulate to toxic levels. Mosquitoes lack kyneurinase (which 

hydrolyses the 3-HK in mammals), so they convert it to the chemically stable XA via 

transaminase instead (Han et al., 2007) (figure 5.1).  
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Figure 5.1 Summary of the tryptophan metabolism pathway, catalyzed 

by a number of enzymes: IDO, Indoleamine 2,3-dioxygenase; TDO, 

tryptophan dioxygenase; KFM, kynurenine formamidase; KMO, kynurenine 

monooxygenase; KAT, kynurenine aminotransferase; HKT, 3-

hydroxykynurenine transaminase. The pathway presented here occurs in 

both the host and the vector, except that mosquitoes do not have the enzyme 

kynureninase, so 3-hydroxy-kyneurenine is oxidised to XA by HKT (Han et 

al., 2007).  

 

5.2.2.1 XA and related compounds as GAFs 

Table 5.1 summarises the current data on exflagellation induced by tryptophan 

metabolites at various concentrations, in vitro. For all Plasmodium species that have 

been tested (rodent: P. berghei and P. yoelii, chicken: P. gallinaceum and human: P. 

falciparum -infecting parasites), tryptophan metabolites induce exflagellation in a 

dose dependent manner, but there is variation between species and some discrepancy 

between studies. XA induced the highest level of exflagellation compared to all other 

compounds and 10
-4

M XA induced P. berghei exflagellation to the same level as pH 

8. However, the concentration of XA required to induce maximum exflagellation 

varied between species (Arai et al., 2001) and studies (Billker et al., 1998). P. 

gallinacuem appears to be the most sensitive of all species to XA (Arai et al., 2001), 

but there are some discrepancies in the patterns observed across studies, with a value 
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of 42% exflagellation at the same concentration reported elsewhere as inducing 

maximum exflagellation (Garcia et al., 1998, Arai et al., 2001). For P. falciparum, 

exflagellation at 10
-4

M XA is 100% across studies, but reports are more variable at 

lower concentrations (ranging between 26 and 49%) (Garcia et al., 1998, 

Bhattacharyya and Kumar, 2001). The pattern for rodent parasites (P. berghei and P. 

yoelii) is more repeatable across studies, with 90-100% exflagellation consistently 

induced from 5 x 10
-5

 to 1 x 10
-3

M XA (intermediate to high concentrations) (Billker 

et al., 1998, Arai et al., 2001).   

 

For P. berghei, quinaldic acid (QA) induced the second highest exflagellation at an 

intermediate concentration (~80% of the 10
-4

M XA level) (Billker et al., 1998), and 

KA followed (Billker et al., 1998). P. berghei was the only species tested that 

reached 100% exflagellation when exposed to high concentrations of KA. Other 

compounds such as 3-hydoxyanthralic acid (3-HAA) and 3-hydroxy kynurenine (3-

HK) also induced some exflagellation in P. berghei, but to a much lesser extent, and 

only at the highest concentration (Billker et al., 1998). For P. falciparum, KA 

induced approximately 50% maximum exflagellation regardless of compound 

concentration, and induced approximately 30% maximum exflagellation in P. 

gallinaceum regardless of concentration. However, there are no data with a sufficient 

range of concentrations to make detailed comparisons between other compounds, for 

any species. 
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5.2.2.2 Relevance of XA in vivo 

The majority of research on the relationship between tryptophan metabolites and 

exflagellation has been carried out in vitro, but XA has been implicated as a 

mosquito – derived GAF which is required for transmission in vivo (Billker et al., 

1998, Garcia et al., 1998). Transmission rates are reduced in eye-colour-mutant 

Anopheles stephensi mosquitoes compared to wild type A. stephensi. This has been 

attributed to the lower concentrations of XA within their eye-pigment pathway, 

which results in lower levels of exflagellation and reduced transmission (Billker et 

al., 1998). Furthermore, XA levels vary depending on mosquito age and species, 

which could explain variation in exflagellation and transmission success across 

different parasite and vector combinations (Siden-Kiamos and Louis, 2004, 

Matsuoka et al., 2007).  

 

However, the mechanism by which XA enters the midgut remains unclear. 

In Drosophila (and therefore presumably also in mosquitoes), XA is deposited in 

Malpighian tubules and excreted in the faeces (Billker et al., 1998); thereby 

bypassing the midgut. Some XA may be secreted into the saliva (0.28ng XA in 

salivary gland) which could be ingested back by the mosquito as it takes a bloodmeal 

(Okech et al., 2006, Matsuoka et al., 2007), but whether this could result in a 

sufficient blood meal XA concentration to induce exflagellation is unclear. 

Uninfected mosquito midgut XA concentration is estimated to be 2.5-3µM XA (Arai 

et al., 2001, Okech et al., 2006) which would only induce approximatley 1- 10 % of 

the maximum level of exflagellation observed for P. berghei, but approximately 50% 

for P. gallianceum and P. falciparum (table 5.1). These levels are unlikley to be 
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sufficient for fertilisation success and transmission (especially for P. berghei) 

(Billker et al., 1998). 

 

5.2.3   Questions outstanding 

5.2.3.1 Is XA the (only) natural GAF? 

Despite wide acceptance that XA is the natural cue responsible for triggering 

exflagellation (Billker et al., 1998, Garcia et al., 1998, Bhattacharyya and Kumar, 

2001, Arai et al., 2001, Okech et al., 2006, Matsuoka et al., 2007), there is no 

definitive proof that it is the actual GAF and also whether it is the only GAF acting 

within the mosquito midgut, for the following reasons: 

 The receptor for XA is yet to be identified (Smith and Jacobs-Lorena, 2010, 

Raabe et al 2011), and pH 8 and XA cultures trigger exactly the same 

downstream calcium signalling pathways involved in exflagellation (Billker, 

2004). It is unclear how these pathways would be triggered by such diverse 

cues.  

 It is not known how parasites avoid premature exflagellation in the blood. 

The combination of a drop in temperature of the peripheral circulation at 

night-time, and XA at a concentration of 0.6 -2µM (Truscott and Elderfield, 

1995, Williams et al., 1984) poses a risk of inadvertently triggering 

exflagellation.  

 The concentration of XA in an infected bloodmeal has not been quantified, 

neither has the mechanism by which XA reaches the blood meal. 



 

143 

Table 5.1 Comparison of tryptophan metabolite - induced exflagellation across a range of in vitro studies. Values 

represent exflagellation as a % of that induced when parasites were exposed to 10-4M XA (bold). XA: xanthurenic acid, KA: 

kynurenic acid, QA: quinaldic acid, KYN: kynurenine, 3-HK: 3-hydroxy-kynurenine. 3-HAA: 3-hydroxy anthralic acid. The 

baseline pH for all cultures ranged from 7.4 -7.5. 
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5.2.3.2 Why is there so much variation in sensitivity to GAFs? 

Sections 5.2.2.1 and 5.2.2.2 summarise variation and discrepancies in the literature. 

Exposing all species to a wider (and higher) concentration range of KA and QA (and 

ideally other members of the tryptophan metabolism pathway) is required for a 

detailed comparison of these metabolites with the activity of XA, and to assess 

whether there is any toxic effect of compounds at high concentrations. The trigger of 

exflagellation by a range of compounds suggests that gametocytes may have evolved 

‘generalist’ receptors, receptors for multiple compounds, or that exflagellation is 

triggered by different GAF in different parasite species. Determining whether there is 

genetic variation in exflagellation responses is important, because for behaviours and 

traits to evolve, genetic variation is required (chapter 1).  Determining the extent of 

genetic variation in GAF sensitivity may also facilitate a better understanding of the 

selective forces shaping mating success. 

 

5.2.3.3 What are the post fertilisation effects of XA? 

Medium to high XA concentrations induce a high level of exflagellation in all 

species tested to date, but this could trade off against a possible toxicity of high XA 

concentrations that impair ookinete development (as suggested by the inhibition of 

exflagellation when P. gallinaceum was exposed to undiluted mosquito head and gut 

extracts containing GAFs (Garcia et al., 1997)).  Whilst previous studies have tested 

the effects of XA and mosquito –derived GAFs on ookinete density in vivo (Arai et 

al., 2001, Bhattacharyya and Kumar, 2001), there has been no direct connection 

between XA induced exflagellation and reproductive success (ookinete yield: 
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ookinetes / exflagellation) in environmentally controlled conditions (in vitro). 

Furthermore, testing the effect of increasing the concentration of other tryptophan 

metabolites (from 10
-3

M to 10
-1

M) on exflagellation and ookinete yield is key in 

determining their relative toxicity, or indeed, whether they enhance ookinete 

development, and the wider implications of this on transmission success. 

 

5.2.3.4 Could the host be the source of XA and other GAFs? 

Although a prominent mosquito metabolite (Li and Li, 1997), XA is also present in 

protozoa (Takeda and Sugiyama, 1993) and uninfected mouse blood (at 0.6 - 2µM 

(Williams et al., 1984, Truscott and Elderfield, 1995)). In P. gallinaceum, the same 

level of exflagellation was observed in cultures supplemented with chicken serum vs. 

cultures containing 10
-4

M XA (Arai et al., 2001).  In addition, the concentration of 

all tryptophan meatbolites (e.g. XA, KA and QA) is raised during a malaria infection 

due to macrophage- mediated activation of the Indoleamine 2,3-dioxygenase (IDO) 

enzyme, which catalyses tryptophan (figure 5.1) (Testsutani et al., 2007). 

Furthermore, Eimeria (an Apicomplexan parasite related to Plasmodium) has been 

shown to ‘co-opt’ the tryptophan catabolism pathway of their mouse host to facilitate 

their own life cycle progression, using IDO (Schmid et al., 2012). The addition of 

XA to IDO - negative (and therefore XA-negative) mice appears to restore Eimeria 

oocyst growth (Schmid et al., 2012). Plasmodium parasites may have evolved to 

utilise the IDO enzyme in a similar way by co-opting it to increase the concentration 

of tryptophan metabolites (which could involve XA, KA and QA) to stimulate 

exflagellation in the bloodmeal. Together, these observations support the hypothesis 
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of the host blood as an alternative or additional source of XA (and other potential 

GAFs) in the bloodmeal. 

 

5.2.4 Aims of Chapter 

The ambition of this study was perform a comprehensive experiment (i.e., each 

infection contributing to all treatments of each compound and concentration), to link 

exflagellation and fertilisation success of P. berghei when exposed to a broad 

concentration range of three key compounds in the tryptophan metabolism pathway: 

XA, KA and tryptophan (Tryp) itself. By following each independent culture from 

exflagellation to ookinete yield, the experiment directly connects gametocyte 

activation and reproductive success (ookinete yield: ookinete density / exflagellation 

density) for the first time. XA, KA and Tryp may also negatively affect male mating 

success and offspring viability. Thus, measuring ookinete density per exflagellating 

male is a better measure of male reproductive success than exflagellation density 

alone. The experiments also aimed to provide more precise and repeatable 

exflagellation and ookinete data than previous studies, through the use of 

haemocytometers (instead of slide and coverslip assays where the densities of cells 

are unknown). Furthermore, my experiment was performed in slightly different 

culture conditions: notably, at a lower pH of 7.3 (vs 7.4 - 7.5 in previous studies) 

which is more representative of P. berghei infected blood (Chang et al., 2001). To 

test for any drop off in exflagellation and possible toxic effects of the compounds at 

high concentrations, concentration peak was increased from 10
-3

M, used in previous 

studies (table 5.1) to 10
-1 

M. Testing the effect of Tryp on exflagellation was also 

novel. Tryp was intended as a negative control for the addition of a compound to the 
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culture media because it is the least likely member of the tryptophan pathway to be 

biologically active due to its comparatively large structure which is dissimilar to XA 

and KA. The study also examined whether three subspecies of P. yoelii (P. yoelii 

yoelii, P. yoelii nigeriensis and P. yoelii subspecies) were sensitive to the same 

GAFs as P. berghei. The subspecies’ were used as a proxy to test for genetic 

variation in GAF sensitivity and corresponding fertilisation success. 

 

5.3   Methods 

5.3.1 General protocols 

For both experiments (‘experiment 1’ and ‘experiment 2’), infections were initiated 

in male MF1 mice (8-10 weeks old, from an in house supplier, The University of 

Edinburgh), with 10
7
 parasitized RBCs from donor mice infected with cryopreserved 

parasites (from The University of Edinburgh’s malaria reagent repository 

http://malariaresearch.eu/), as detailed below. For experiment 1, 11 P. berghei 

WT ANKA high producer (P. berghei) infections were initiated, and for experiment 

2, 5 P. yoelii nigeriensis N67 (Pyy), 3 P. yoelii subspecies IV (Pys), and 3 P. yoelii 

yoelii 17X (Pyy) were initiated. The mice had been pre-treated with phenylhydrazine 

at 125 mg/kg (2 days before infection) to enhance the production of gametocytes 

(Reece et al., 2008). 

 

5.3.1.1 Pre-assay checks 

To check that infections were suitable for setting up the main experiments, on days 4 

and 5 post infection tests were performed to verify that there was a sufficient density 

http://malariaresearch.eu/
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of mature gametocytes in the infected blood for assaying exflagellation and ookinete 

development.  These tests involved culturing 2μl of tail blood in 100μl fresh ookinete 

media (RPMI + 10% foetal calf serum, pH 8) at 20
o
C and vortexing to stimulate 

exflagellation (Janse et al., 1985). Ten minutes post initiation, 8μl of this culture was 

placed under the cover slip of a haemocytometer and the number of exflagellation 

events observed in 1/9 of the haemocytometer grid (100nl culture) was recorded. An 

exflagellation event was defined as a haphazard, rapidly moving parasite extruding 

flagella; often forming clumps (exflagellation centres) with nearby RBCs. When 

more than 20 exflagellation events were counted in 1/9 of a haemocytometer, these 

infections were considered suitable for assaying.  As a control, 2μl of tail blood was 

also cultured in 100μl fresh stasis media (RPMI + 10% foetal calf serum, pH 7.3) at 

20
o
C and vortexed to confirm that exflagellation was not initiated (or was at a very 

low level (i.e. less than 5 exflagellation events in a whole haemocytometer grid) at 

this pH.  

 

5.3.1.2 General protocols for the main experiments 

Once infections had been assessed as suitable for assaying, the main experimental 

cultures (RPMI + 10% foetal calf serum) were set up containing XA, KA or Tryp at 

concentrations specified in sections 5.3.3 and 5.3.4). The pH of each culture was 

adjusted to 7.3 after the addition of compounds to eliminate any variation in pH 

confounding results. Negative (pH 7.3) and positive (pH 8) control cultures were also 

set up from the same infections. 2 µl tail blood was collected from infected mice, 

added to the pre-prepared cultures, and vortexed. After 14 minutes, exflagellation 

was recorded using a haemocytometer (as described in 5.3.1.1). If fewer than 30 
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exflagellation events were observed in 1/9 of the haemocytometer area, then 

exflagellation density was counted over 1/3 of the haemocytometer area. All cultures 

were then placed in an incubator (at 20
o
C for experiment 1 and 24

o
C for experiment 

2) for 18-21 hours, to allow for fertilisation and ookinete maturation. Following this 

incubation period, cultures were removed from the incubator and vortexed for at least 

20 seconds to eliminate clumping of ookinetes and female gametocytes, and ookinete 

density was assayed over at least 2/3 of the total haemocytometer area. RBC density 

counts were taken of the infected blood on the day of culture, to monitor anaemia of 

the mice and to allow calculations of exflagellation and ookinete densities. 

 

5.3.2 Protocol optimisation 

Before the main experiments were carried out, routine culture protocols were 

optimised to account for the comparatively large scale assays in these experiments 

(5.3.2.1) and to identify the optimal baseline pH to use (5.3.2.2). 

 

5.3.2.1 Culture optimisation 

Whilst the routine, large scale culturing of Plasmodium gametocytes (50- 75µl heart 

blood in 5000µl culture media) is well tested and known to produce high ookinete 

yields, the two main experiments described below required a large number of culture 

conditions (so each infection had to contribute to many different treatments), with the 

added complication of assaying exflagellation within a limited time window (2 

minutes). This meant using tail blood rather than heart blood and reducing the 

routine culture volumes to 2µl blood in 200µl culture media, whilst keeping the 

concentration within the same range (1.0 ± 0.5% blood). Trials concluded that there 
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was no difference in the optimal culture conditions for ookinete yield between tail 

and heart blood initiated cultures (at pH8, with heparin and 10% foetal calf serum) 

and that there was no difference between culturing in centrifuge tubes (and vortexing 

to mix blood on culture initiation) vs. culture plates (and pipetting to mix blood) 

(data not shown). Therefore, all assays in experiment 1 used routine culture 

conditions (RPMI + 10% foetal calf serum, pH 7.3, at 20
o
C), but at a reduced volume 

of 200µl, and in centrifuge tubes as this method was more practical and economical 

than using culture plates.  

 

An additional pilot experiment was carried out to test the time point after culture 

initiation at which the highest level of exflagellation was recorded. Tests concluded 

that there was no difference in exflagellation density between 14 minutes and 19 

minutes post initiation across all cultures assayed (pH8, XA, KA and Tryp, all at 10
-

4
M) (data not shown). Therefore, in the interests of efficiency, exflagellation counts 

for all experiments were initiated at 14 minutes post initiation.  

 

5.3.2.2 Baseline pH 

As the ambition of the main experiment was to test the effects of compounds on 

exflagellation and ookinete yield, it was necessary to ensure that no additional 

culture characteristics would confound any compound effect; namely the pH of the 

culture. Pilot work  showed that there was a significant effect of treatment on the 

exflagellation level of P. yoelii yoelii, strain 17X (relative to the total exflagellation 

across all treatments applied to that infection) between cultures at pH8, pH 7.3, pH 
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7.4, and 10
-4

M XA (treatment: χ
2

3,6= 33.791, p<0.001) (figure 5.2). Post hoc tukey 

tests revealed a significant difference between 10
-4

M XA (0.209 ± 0.088) and pH 7.3 

(0.0096 ± 0.006) (z ratio = 4.39, p<0.001), but no significant difference between 10
-

4
M XA (0.209 ± 0.088) and pH 7.4 (0.0918 ± 0.040) (z ratio = 2.373, p =0.0823). 

Although this was not quantified for P. berghei, I observed pH 7.4 inducing 

exflagellation for these parasites too. This implies that previous studies which have 

used pH 7.4 – 7.5 as a baseline for testing XA activity may be confounded. To avoid 

this problem here, all cultures in the main experiments were set to a baseline of pH 

7.3. 

 

Figure 5.2 Exflagellation at different pH values. Exflagellation relative to 

the total exflagellation for each treatment for a given infection of P. yoelii 

yoelii, when exposed to pH 8, pH 7.4, pH 7.3 and 10-4M) XA. Mean ± SEM. 

Number of independent infections, N=3. 
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5.3.3 Experiment 1: Exflagellation and ookinete yield of P. berghei   
when exposed to 10-6 to 10-1M X xanthurenic acid, kynurenic acid, or 
tryptophan 

Experiment 1 was designed to test the role of XA, KA and Tryp in inducing 

exflagellation and their consequences on ookinete yield over a wider range of 

compound concentrations than previously tested.  For each infection, 18 x 200µl 

cultures (containing RPMI + 10% foetal calf serum, pH 7.3, at 20
o
C) were set up 

containing XA, KA or Tryp each at the following concentrations: 10
-1

, 10
-2

, 10
-3

, 10
-

4
, 10

-5
, and 10

-6
M, with 2 µl tail blood.  

 

5.3.4 Experiment 2: Exflagellation and ookinete yield of three 
subspecies of P. yoelii when exposed to 10-4M xanthurenic acid, 
kynurenic acid, or tryptophan. 

The ambition of experiment 2 was to test for any variation in exflagellation and 

ookinete yields between three subspecies of P. yoelii: (P. yoelii nigeriensis N67 

(Pyy),  P. yoelii subspecies IV (Pys), and P. yoelii yoelii 17X (Pyy) when cultured in 

10
-4

M XA, KA or Tryp. Cultures were set up according to the protocols outlined in 

section 5.3.2; except that 2µl infected tail blood was cultured in 100µl ookinete 

media instead of 200µl. This was because gametocyte density for P. yoelii infections 

was on average 10-fold lower than for P. berghei (1.35 x 10
7
 gametocytes / ml blood 

for Pyy, Pyn and Pys vs 1.74x 10
8
 gametocytes / ml blood for P. berghei). Increasing 

the gametocyte density of cultures enabled faster and more efficient exflagellation 

assays, and increasing the density of blood in the culture by only 1%, was not 

expected to interfere with fertilisation or ookinete maturation, as the overall density 

of blood was still low (2%) (see section 4.4.4.1). 
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5.3.5 Analysis 

After accounting for dilution factors and for the RBC density of each infection 

contributing to cultures, exflagellation density (exflagellation / ml blood) was 

calculated. Ookinete yields were also calculated (ookinete density / exflagellation 

density). All response variables (which were relative to the pH8 control) were 

transformed to conform to the assumptions of normality and to allow maximum use 

of the whole data set which was zero inflated. Linear mixed effects models (LME) 

were fitted to all data using infection as a random effect to account for 

pseudoreplication arising from repeated measurements of each infection. Models 

were minimised following stepwise deletion of the least significant term and using 

log likelihood ratio (χ
2
) tests to evaluate the change in model deviance until only 

significant terms remained in the model.  

 

For experiment 1, when compound concentration = 10
-1

M, all response values were 0 

and so were removed from the analysis to reduce the issue of zero inflation skewing 

the distribution. For experiment 2, because ookinete yield was consistently zero for 

KA and Tryp across all strains, these were removed from the analysis. Raw ookinete 

yields were reported for this analysis because pH8 did not induce exflagellation in 

Pys (even though XA did). 
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5.4     Results 

5.4.1   Experiment 1 

5.4.1.1 Exflagellation 

The effect of each compound on exflagellation was dependent on its concentration 

(treatment*concentration: χ
2

2, 8 = 29.489, p<0.0001) (figure 5.3A).  XA consistently 

induced the highest exflagellation followed by KA, then Tryp (except at high 

concentrations (10
-2

 M) where KA induced the highest exflagellation and XA and 

Tryp were close to zero). At the highest concentration of 10
-1

M, exflagellation was 0 

for all three compounds tested. At intermediate concentrations (10
-3

M to 10
-5

M), 

XA- induced exflagellation was consistently higher than that observed for pH8 

cultures (10
-3

M: 1. 18 ± 0.53, 10
-4

M: 1.17 ± 0.65, and 10
-5 

M: 1.70, ± 1.16), and was 

~10 fold higher than KA and Tryp –induced exflagellation. Exflagellation for KA 

(peak at 10
-2

M: 0.33± 0.17) or Tryp (peak at 10
-4

M: 0.11 ± 0.07) never reached even 

half of the pH8 exflagellation level, regardless of concentration. At the lowest 

concentration of 10
-6

M, exflagellation between the three compounds was very similar 

(XA: 0.19 ± 0.10, KA: 0.10 ± 0.03, Tryp: 0.14 ± 0.10).   

 

5.4.1.2 Ookinete yield 

Raw ookinete densities followed a very similar pattern to exflagellation. For 

example, at intermediate densities XA ookinete density was ~10-fold higher than that 

for KA and Tryp (data not shown). To test for any variation in post-exflagellation 

effects (on the mating success of microgametes or female gametes, or ookinete 

development) between compounds and across the concentration range, ookinete 

yields were analysed (figure 5.3B). The effect of each compound on ookinete yield 
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relative to pH8 depended on its concentration (treatment*concentration: χ
2

2, 6 = 

10.441, p=0.005) (Figure 5.3B).  Ookinete yield increased (with the relative yield for 

each compound at 10
-2

M being Tryp>KA>XA), from zero for all compounds at the 

highest concentration (10
-1

M) to the highest yield for all compounds at an 

intermediate concentration (10
-3

M) (XA: 1.19 ± 0.14, KA: 1.11 ± 0.14, Tryp: 1.46 ± 

0.15). At lower concentrations (10
-4

 to 10
-5

M), ookinete yields for XA, KA and Tryp 

were similar (10
-5

M: XA: 0.98 ± 0.14, KA: 0.84 ± 0.13, Tryp: 0.53 ± 0.11) except at 

the lowest concentration where KA yields were slightly higher than XA and Tryp.   
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Figure 5.3 Exflagellation and ookinete yields of P. berghei. Exflagellation 

(A) and ookinete yield (ookinete/exflagellation) (B) relative to the pH8 positive 

control of P. berghei cultures when exposed to XA, KA and Tryp ranging from 

10-6 to 10-1M. Mean ± SEM. N =11 independent infections. Shaded bar 

highlights 10-4M which is the assumed optimal concentration for XA-induced 

exflagellation from previous work (Billker et al., 1998). 

 

5.4.2  Experiment 2 

The effect of each compound on exflagellation was not dependent on the subspecies 

of P. yoelii tested (compound*subspecies: χ
2

4, 7= 4.906, p= 0.297) (figure 5.4A). 

(M) 
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However, there were main effects of subspecies on exflagellation (subspecies: χ
2

2, 6= 

15.19, p<0.001) and compound identity (treatment: χ
2

2, 5= 13.256, p=0.001). Across 

all compounds, exflagellation was highest for Pyn, followed by Pys, and Pyy had the 

lowest exflagellation. Exflagellation for all subspecies was the highest in pH8 

cultures, followed by XA, then KA and finally Tryp, where exflagellation was the 

lowest for all subspecies (except for Pyy, where KA induced 0 exflagellation).   

 

No ookinetes were observed in any cultures containing KA or Tryp across all 

subspecies, so these values were removed from statistical analysis. Comparing the 

ookinete yields in XA and pH8 cultures revealed that yields from each subspecies’ 

were not significantly different from each other (subspecies:  χ
2

2, 4= 2.628, p= 0.268) 

and not influenced by treatment (10
-4

M XA vs pH8; treatment*subspecies:  χ
2

2, 6= 

1.701, p= 0.427 and treatment: χ
2

1, 3= 0.763, p= 0.382) (figure 5.4B).  
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Figure 5.4 Exflagellation and ookinete yields of P. yoelii yoelii, P. yoelii 

nigeriensis and P. yoelii subspecies.  (A) Exflagellation (relative to pH8) of 

Pyn: P. yoelii nigeriensis, Pyy: P. yoelii yoelii and Pys: P. yoelii subspecies, 

when exposed to 10-4M XA: xanthurenic acid, KA: kynurenic acid, and Tryp: 

tryptophan. (B) Ookinete yield (ookinete/exflagellation) when exposed to pH8 

or 10-4M XA. Mean ± SEM. N ranges from 3 to 5 infections that contributed to 

each treatment. 
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5.5 Discussion 

The data show that 1) P. berghei exflagellation and ookinete yields vary depending 

on the presence and concentration of XA, KA and Tryp in vitro. 2) Exflagellation is 

significantly different between three subspecies of P. yoelii (Pyn, Pyy and Pys), and 

XA, KA and Tryp induce significantly different levels of exflagellation for P. yoelii 

subspecies. 3) Tryp - and KA - induced exflagellation failed to yield any ookinetes 

for any P. yoelii subspecies, and there was no significant difference between XA and 

pH8 induced ookinete yields for Pyy, Pyn, or Pys.   

 

5.5.1 Linking exflagellation and ookinete yields 

Ookinete yield (ookinete density / exflagellation density) is a more appropriate 

measure of transmission success than simply exflagellation or ookinete density alone, 

because XA, KA and Tryp have unknown post-exflagellation consequences for the 

success of microgametes, female gametes and ookinete development. These 

experiments directly connected XA, KA and Tryp induced exflagellation and 

reproductive success for the first time. If, for example, all microgametes resulting 

from the exflagellation levels observed in figure 5.3A were equally able to mate and / 

or produce viable offspring, then ookinete density would be equivalent to 

exflagellation across all treatments and this would result in an ookinete yield of ‘1’ 

(i.e., a single flat line with an intercept at 1 would have been observed in figure 

5.3B). Any significant deviation from this pattern indicates that the treatments have 

differing post-exflagellation effects compared to pH8 cultures.  
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5.5.1.1 P. berghei and dose responses 

5.5.1.1.1 Intermediate concentrations: 10-4M XA is the optimal GAF, in 

vitro 

For P. berghei, exflagellation patterns relative to pH8 were largely as predicted 

(XA>KA>Tryp) at all but the highest concentrations (KA didn’t ever reach the same 

level of exflagellation as pH8, as previously observed) (Billker et al., 1998). For 

intermediate concentrations (10
-5

 to 10
-3

M), XA clearly induced the highest 

exflagellation relative to pH8, while KA and Tryp induced similarly low levels of 

exflagellation to each other (~10 fold lower than XA). The same ~10 fold difference 

between XA, and KA / Tryp at intermediate densities was observed for ookinete 

density relative to pH8 (data not shown). 

 

The general patterns observed in figure 5.3B suggest two main findings. First, 

ookinete yields were similar across the compounds at intermediate concentrations. 

Second, ookinete yields for all compounds at low and intermediate concentrations 

fluctuate around 1. Taken together, these results suggest that the compounds (at 

intermediate concentrations) have no significant post-exflagellation inhibition or 

enhancement of reproductive capacity. Therefore, the data support the identity of 

intermediate concentrations of XA (specifically 10
-4

M XA, which is widely used in 

exflagellation studies (Arai et al., 2001)) as the GAF that induces most exflagellation 

and ookinetes. However, further work is required to verify whether KA induces a 

biologically relevant increase in ookinete yield at the very low concentration of 10
-

6
M. 
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5.5.1.1.2 Variable ookinete yields at high concentrations (10-2M) 

At a high compound concentration (i.e., 10
-2

M) ookinete yields for XA and KA 

started to drop but ookinete yields for Tryp remained at roughly the same level as at 

10
-3

M (where ookinete yields were similar for all compounds) (5.5.1.1). This result 

suggests that the compounds (XA, KA and Tryp) differentially affected the ability of 

(one or more of) the microgametes / female gametes / zygotes to produce ookinetes. 

Non-mutually exclusive explanations for this include the following.  

 

First, high Tryp concentrations could enhance post exflagellation reproduction. For 

example, the host--derived IDO enzyme (which is activated by malaria infections 

(Testsutani et al., 2007)) could catalyse tryptophan metabolism (increasing XA, KA 

and QA concentrations in culture), which could trigger delayed exflagellation. Data 

from the related Apicomplexan parasite, Eimeria supports this hypothesis, in 

principal (Schmid et al., 2012). However, if activation of males took much longer 

than could have been observed in the assays (at 14mins), then immature “retort”-

shaped ookinetes are likely to have been observed in the cultures.  

 

Alternatively, Tryp itself could provide an additional resource for developing 

ookinetes in vitro (tryptophan is already one component of the RPMI 1640 culture 

media). However, this may not be relevant to transmission success in natural 

infections, because previous in vivo experiments found a detrimental effect of 

synthetic tryptophan-supplemented sugar meals on oocyst numbers (Okech et al., 

2006).  
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Finally, instead of Tryp enhancing ookinete development, XA and KA may have 

inhibited post exflagellation development. This hypothesis is supported by the 

observation that the ookinete yields for XA and KA cultures are much reduced 

compared to Tryp at a high concentrations (10
-2

M) (Figure 5.3). 

 

5.5.1.2 P. yoelii and genetic differences 

For P. yoelii, the difference in exflagellation between subspecies (Pyn>Pys≥Pyy) 

indicates genetic variation in exflagellation responses. Furthermore, variation in the 

sensitivity of subspecies to different GAFs was observed. XA induced the highest 

level of exflagellation, but this was lower than the level induced by pH8, for all 

subspecies. Tryp induced the lowest exflagellation for Pyn and Pys, but not for Pyy, 

where KA failed to induce any exflagellation (figure 5.4A). Zero ookinete yields for 

KA and Tryp may be due to post exflagellation inhibitory effects on the 

microgametes, female gametes, and/or zygotes (as suggested for P. berghei when 

compound concentration is high: 5.5.1.1.2) that reduced ookinete yield below a 

detectable level.   

 

Different exflagellation responses between subspecies provide evidence for variation 

on which selection can act. Furthermore, different selective forces (e.g. exposure to 

XA / KA/ Tryp) may be shaping evolutionary responses in different subspecies. For 

example, exposure of a given subspecies to an environment where XA is the 

predominant GAF is likely to select for higher sensitivity to XA relative to KA and 

Tryp. For example, if the natural GAF is a mosquito-derived factor and its identity 

varies across mosquito species, then this could be one reason for adaptation to a 
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specific vector species. Further work characterising the extent of genetic variation in 

sensitivity to GAFs (as well as subsequent ookinete yields) could improve our 

understanding of the selective forces shaping mating success. 

 

5.5.2 Relevance to previous data and the importance of pH 

It was not possible to make quantitative comparisons between the responses of P. 

berghei and P. yoelii under different culture conditions because they were two 

separate experiments and P. yoelii responses varied across subspecies. However, 

figures 5.3 and 5.4 suggest that P. yoelii yoelii is less sensitive to all compounds at an 

intermediate concentration than P. berghei (e.g., exflagellation relative to pH8 for 10
-

4
M XA was 0.16 vs. 1.18 respectively). This contradicts previous studies which 

suggest that P.yoelii yoelii and P. berghei exflagellation is maximal (100%) at 10
-4

M 

XA (Arai et al., 2001) (table 5.1).  Furthermore, previous work suggested that KA 

induces higher exflagellation than was observed in this experiment, (e.g., while 10
-

3
M: KA induced only 0.29 of P. berghei maximal exflagellation here, maximum 

exflagellation was recorded at the same concentration in Billker et al (1998) (table 

5.1, figures 5.3 and 5.4).  

 

Differences between studies may  be due to differences in culture set up; in 

particular, the lower pH used here. The common use of pH 7.4 – 7.5 as a control and 

baseline may have confounded and artificially increased exflagellation data in 

previous experiments.  Indeed, pilot work for this experiment showed that there was 

no significant difference in P. yoelii yoelii exflagellation between pH 7.4 and 10
-4

M 

XA cultures at pH7.3 (figure 5.2). There is no comparable data for P. berghei, but it 
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is likely that the same occurs for P. berghei. Furthermore, because pH 7.4 induces 

exflagellation in vitro (to a similar level of 10
-4

M XA), and the bloodmeal could 

reach pH7.4 quickly (Billker et al., 2000), it is possible that no additional GAFs are 

necessary for inducing exflagellation in vivo.  

 

Going forward, one key question is whether pH interacts with tryptophan metabolites 

to cause different effects on exflagellation and crucially, ookinete yields. If 

increasing pH just shifts the reaction curve for exflagellation to the left (higher 

exflagellation at lower compound concentrations; but the pattern is the same), as 

implied by (Billker et al., 1998), there is no cause for concern, but this needs to be 

explicitly tested with a fully cross factored experiment varying pH and all compound 

concentrations simultaneously. 

 

5.5.3 Summary and future directions 

The data clearly support the identity of XA as the optimal GAF at intermediate 

concentrations. Results also highlight significant differences in exflagellation and 

ookinete yields between species and subspecies, as well as the importance of pH in 

exflagellation and ookinete assays. Furthermore, the data raise complex questions 

about the post exflagellation effects on free microgametes, female gametes, zygotes 

or ookinete development, and how this relates to ookinete yields of compounds at 

high concentrations.  To disentangle the effects between gametes and ookinetes, 

experiments could involve washing cultures and replacing with fresh pH 7.3 culture 

media post fertilisation. This would remove any compound- or pH- effect on 

ookinete development. In addition, comparing the results of cultures set up in the 
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AM vs PM could indicate a role of the circadian activity of tryptophan metabolism 

(which is highest in the morning) (Rapoport and Beisel, 1968). This may help to 

reveal whether parasites are using compounds derived from the host as a trigger for 

exflagellation upon ingestion by the mosquito. For example, melatonin is also a 

product of the tryptophan metabolism pathway (figure 5.1) and is a well- known 

regulator of circadian rhythms (Hotta, 2000). Testing whether melatonin and XA 

production are linked would help to clarify whether circadian rhythms and 

transmission patterns are linked, as proposed by the “Hawking hypothesis”: that 

reproductive effort is coordinated so that gametocytes reach maximum infectiousness 

at the time of mosquito feeding (Hawking et al., 1966). Finally, further work is also 

required to identify the receptor for XA, why pH 8 induces the same downstream 

signalling pathways as XA (Billker et al., 2004), and the mechanism by which GAFs 

reach the bloodmeal.  
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6 General Discussion 

The ambition of this work was to integrate evolutionary theory, ecology, cell and 

molecular biology, parasitology and biophysics to develop a greater understanding of 

the reproductive strategies of protozoan parasites within the host and vector. 

Specifically, in this thesis, taking a novel and challenging approach, I have used 

malaria parasites to  i) examine why parasites adjust their investment in gametocytes 

according to environmental variation (using an evolutionary ecology framework); ii) 

identify factors that parasites use to detect environmental changes, demonstrated by 

subsequent changes in their reproductive strategies (integrating parasitology and 

molecular biology techniques); iii) characterise the swimming dynamics and mating 

strategies of male malaria gametes (using methods derived from biophysics); and  iv)  

quantify variation in the mating success of parasites when exposed to different 

gametocyte activating factors and RBC densities (integrating cell and parasitology 

methods). Throughout the thesis, I have recommended future experiments that could 

help to solve some of the remaining questions regarding parasite biology and 

behaviour, and explained how they can be combined with mechanistic approaches. In 

this section, I summarise my results, explain how they enhance our understanding of 

the reproductive strategies of malaria parasites and related Apicomplexans. 

 

6.1 Variable reproductive strategies: implications and future work  

Using the evolutionary ecology framework introduced in chapter 2, experimental 

manipulations in chapter 3 revealed a significant reduction in gametocyte upon 

exposure to lysed parasite material and a borderline significant increase in sex ratio 

when exposed  to lysed red blood cells (both uninfected and infected). Demonstrating 
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that variation in gametocyte investment and sex ratio observed during infections are 

a result of parasite strategies (rather than the footprint of host physiology), provides a 

foundation on which to investigate the fitness consequences of plasticity. 

Furthermore, the results provide a base to explore whether drugs could be developed 

to trick parasites into making the wrong decisions for a given infection (in the 

absence of any real environmental variation). This is a significant challenge, because 

it is likely that the situation is complex; with  multiple genes and pathways involved 

in sensing the environment, processing the information, making reproductive 

decisions and producing the phenotype (Carter et al., 2013) (chapter 2). Nevertheless, 

if precise cues can be isolated, it not only facilitates quantification of the costs and 

benefits of plastic parasite reproductive strategies (which is a longstanding challenge 

for the study of phenotypic plasticity (Auld et al., 1999), it also paves the way for the 

development of a novel intervention in the form of an “ecological-trap”; which 

would trick parasites into investing in gametocytes at the expense of asexual 

replication (in a vector-free environment) and thus reduce harm to the host. Isolating 

the precise cues could also aid further characterisation of the numerous molecular 

pathways implicated in the commitment and differentiation of gametocytes and 

therefore facilitate the development of novel drugs and vaccines. Comparing the 

reproductive strategies of wild type parasites to gametocytogenesis –associated 

knock-out lines (e.g., genes such as pfgig, pfmdv-1, pfpuf2, npt1, ppm2, ap2-g (Miao 

et al., 2010, Guttery et al., 2014, Kafsack et al., 2014, Sinha et al., 2014)) in variable 

environmental conditions could help to clarify the exact cues used and the time point 

at which cells commit to developing as a gametocyte. 
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6.2 Mating within the vector: implications and future directions 

Integrating parasitology and biophysics, data collected in chapter 4 shows that P. 

berghei microgametes i) have a complex swimming pattern despite being a simple 

flagella with no accessory structures, ii) have a reduced reproductive success rate 

when in culture with a high concentration of microparticles (which were intended to 

mimic RBCs within a bloodmeal), and iii) may be attracted to P. berghei female 

gamete material. Furthermore, the results of chapter 5 suggest that gametocyte 

activation and subsequent reproductive success is significantly dependant on the 

identity and concentration of the factor initiating gametogenesis (gametocyte 

activation factor; GAF).  

 

Understanding the species-specificity of this mating behaviour (as described above) 

is necessary to confirm the relevance of rodent malaria parasites as an effective 

model for the study of human malaria. For example, is the microgamete size, 

structure, motility and speed of other Plasmodium species the same as for P. 

berghei? This should be relatively easy to quantify once the holographic 

reconstruction of microgametes can be automated (Wilson et al., 2013). Furthermore, 

high resolution video microscopy coupled with fluorescent labelling of the 

microgametes may be able to determine whether the microgamete has a single locus 

for attachment to an RBC or female gamete (building on the reports of nanotube 

filaments connecting gametes (Rupp et al., 2011)). Finally, expanding assays to test 

the effect of P. berghei female gamete material (or glucose, or Ca
2+

) on P. yoelii 

microgamete motility would help to reveal whether chemotaxis is involved in 

reproductive isolation.  Mixed species infections are very common in the field, but 
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what prevents hybridisation between species is unclear (Ramiro et al., 2012). 

Comparing the swimming characteristics and mating ability of microgametes of 

other Plasmodium species may help to resolve this.   

 

If the mating behaviours observed in chapters 4 and 5 are conserved, further work 

could help characterise weak points during mating that could aid the development of 

novel transmission blocking interventions. For example, disrupting chemotaxis, as 

discussed in 4.5.4 and mechanisms of increasing microgamete interactions with 

RBCs could be developed to inhibit fertilisation. Integrating this work with 

molecular studies could also benefit current transmission blocking developments. To 

date, the genes known to be involved in gametogenesis are: mdv-1/peg3, pfg377 and 

exflagellation specifically: ppm1, srpk, cdpk4, map2, actin2; male gamete 

functionality:  hap2/gcs1, pf16, p48/45, p230; female gamete functionality: p230, 

p47, pkg; zygote formation: cith, hmpg2, dozi; and ookinete differentiation: nek2, 

nek4, pk7, gak, ppkl, ppm2, ap2-o (van Dijk et al., 2001, Liu et al., 2008, De Koning-

Ward et al., 2008, Ponzi et al., 2009, Guttery et al., 2012, Guttery et al., 2014). 

Comparing the motility parameters, effect of RBC density and chemotaxis assays of 

wild type parasites to those with these knock-out lines could help to clarify the exact 

stage at which each gene is expressed as well as their relative importance for parasite 

fitness.    
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6.3 Bridging scales  

In order to fully appreciate the epidemiological impact of variation in traits, the 

relative importance of host- and vector- derived interactions on parasite behaviour, 

and how these vary over the course of an infection and between genotypes must be 

carefully considered (Poulin, 2007, Matthews, 2011, Mideo and Reece, 2011). 

Furthermore, cross-scale (within- and between-host) trade-offs are very rarely 

studied. For example, the extent of host anaemia (where there is a high density of 

lysed cells, but low density of whole RBC compared to healthy blood) could have 

important implications for a range of within- and between- host traits and behaviours 

that have been tested throughout this thesis. First, low RBC density could trigger an 

increase in gametocyte production (at the expense of asexual replication) (Reece et 

al., 2005). Second, the investment in male vs. female gametocytes is predicted to 

increase in response to low RBC density (Reece et al., 2005) and exposure to lysed 

RBC material (lysed cell material appears to act as a cue for adverse conditions 

which results in an increase in sex ratio) (Carter et al., 2014, chapter 3). Finally, 

mating success in the vector appears to be higher when RBC density is lower 

(section 4.4). Combining these observations; on the face of it, anaemic hosts would 

have the cumulative effect of increasing fertilisation success. Future experiments that 

disentangle how each of these factors interacts and trade-off against each other to 

affect overall parasite fitness are necessary.   

 

For laboratory experiments, quantifying the variation in parasite strategies over the 

course of an infection in mice and mosquitoes is reasonably straightforward, but 

achieving this is natural infections is much more challenging. Current data on human 

malaria infections generally consists of snapshots in time, due to ethical and 
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logistical constraints in data collection (Färnert, 2008). However, with increasingly 

sophisticated statistical and modelling techniques, it could be possible to detect 

patterns of transmission in natural infections across populations to inform the 

development of interventions (reviewed in (Bousema and Drakeley, 2011, Churcher 

et al., 2013. The added complications of plasticity in reproductive strategies in 

response to the availability of insect vectors (Corrnet et al., 2014), and vector 

evolution in response to environmental variation and human interventions must also 

be carefully considered in future modelling exercises and analysis of field data 

(Lefèvre et al., 2013, Sternberg and Thomas, 2014). For example, how vector control 

programmes would affect parasite evolution remains unclear (Gatton et al., 2013). 

Furthermore, with climate change inducing shifts in parasite host range, (Lafferty, 

2009) unless the phenotypic range of the parasite, and the specific trade-offs that 

parasites face are quantified, it is impossible to predict how changing vectors, and 

therefore their mating environment, could affect parasite evolution and the spread of 

disease. To fully understand and predict the epidemiological consequences of 

variation, linking the within-host and within-vector scales is essential (Mideo and 

Day, 2008). 

 

6.4 Summary 

 

The work presented in this thesis provides evidence of remarkable variation in 

malaria parasite reproductive strategies and fertilisation success when exposed to 

environmental changes, both within the host and the vector, respectively.  The 

observations can be used to help guide future interdisciplinary experimental 
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approaches to characterise the behaviour and evolution of malaria parasites and 

related protozoans (e.g. trypanosomes face a similar trade-off between within-host 

replication and between-host transmission (Pollitt et al., 2011a, Carter et al., 2013, 

Carter et al., 2014) (chapters 2 and 3), and Eimeria and Toxoplasma have similar 

processes of gametogenesis and mating (chapters 4 and 5) (Walker et al., 2013)). 

Ultimately, by understanding the parasite reproductive strategies which underlie 

disease epidemiology, we can inform the development of novel strategies to reduce 

transmission and better understand the potential for parasite evolution to undermine 

interventions. 
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Appendices 

Appendix figures and equations 

 

Appendix Figure 1. Plasmodium chabaudi AJ infection dynamics: mean 

(± SEM) for each cue treatment (C: control, U: uninfected RBCs, UL: 

uninfected lysed RBCs, AJ: AJ-infected lysed RBCs and ER: ER-infected 

lysed RBCs) administered on day 4 PI for cohort 1 (left) and day 10 PI for 

cohort 2 (right) (indicated by grey bars). RBC density dynamics (A); 

proportion of RBCs that are reticulocytes (B) and asexual density dynamics 

(C). Maximum values for the Y axes differ between cohort 1 and cohort 2 to 

allow clear visualization of the range of data for each cue treatment group. 
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Appendix equation 1 

To calculate the probability that any potential chemoattractant would diffuse to 

the ‘away’ location after 20 minutes, the following equation was used: 

 
Where: 

c = concentration of chemoattractant (1000mM) 

x = position 

t = time 

cL= concentration at x<0 

cR= concentration at x>0 

erf =  error function (standard in probability maths) 

D = chemoattractant diffusivity = typical molecular diffusivity: 4 x 10-9 m2/s 

 

At t=0 seconds, the interface at x=0 is sharp, with initial concentration cL at x<0 

and cR at x>0.  The sharp interface blurs out over time to 1200 seconds (20 

minutes). Any edge effects are ignored and the distance along the channel is 

assumed to be the only relevant quantity (i.e. concentration is constant as a 

function of channel width and height). Estimated values were applied to the 

equation and plotted in Appendix figure for equation 1 (credit: L. Wilson, 

Harvard).   

 

 
Figure for equation 1. Predicted relationship between the distance from the 

interface and concentration of chemoattractant after 20 minutes. At 12.5mm 



 

195 

from x (the minimum distance at which microgamete density was counted for 

the ‘away’ location), the concentration is 0 after 20 minutes. 

 

Appendix Figure 2 

 

Appendix Figure 2. Microgamete density (microgametes/field) at the 

interface with the treatment (grey) and away from the interface treatment 

(white) at the start of the assay (time = 0-6 minutes). Mean (± SEM), n 

ranges from 9 to 13.  Microgametes were evenly distributed around the 

chamber (χ 2
1, 7=0.13, p= 0.72), and across treatments (χ 2

4, 3=7.71, p= 0.10) 

at the start of the assay. 
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Abstract

Background: Investment in the production of transmissible stages (gametocytes) and their sex ratio are malaria
parasite traits that underpin mosquito infectivity and are therefore central to epidemiology. Malaria parasites adjust
their levels of investment into gametocytes and sex ratio in response to changes in the in-host environment
(including red blood cell resource availability, host immune responses, competition from con-specific genotypes in
mixed infections, and drug treatment). This plasticity appears to be adaptive (strategic) because parasites prioritize
investment (in sexual versus asexual stages and male versus female stages) in manners predicted to maximize fitness.
However, the information, or ‘cues’ that parasites use to detect environmental changes and make appropriate
decisions about investment into gametocytes and their sex ratio are unknown.

Methods: Single genotype Plasmodium chabaudi infections were exposed to ‘cue’ treatments consisting of intact
or lysed uninfected red blood cells, lysed parasitized RBCs of the same clone or an unrelated clone, and an
unmanipulated control. Infection dynamics (proportion of reticulocytes, red blood cell and asexual stage parasite
densities) were monitored, and changes in gametocyte investment and sex ratio in response to cue treatments,
applied either pre- or post-peak of infection were examined.

Results and conclusions: A significant reduction in gametocyte density was observed in response to the presence
of lysed parasite material and a borderline significant increase in sex ratio (proportion of male gametocytes) upon
exposure to lysed red blood cells (both uninfected and infected) was observed. Furthermore, the changes in
gametocyte density and sex ratio in response to these cues depend on the age of infection. Demonstrating that
variation in gametocyte investment and sex ratio observed during infections are a result of parasite strategies
(rather than the footprint of host physiology), provides a foundation to investigate the fitness consequences of
plasticity and explore whether drugs could be developed to trick parasites into making suboptimal decisions.

Keywords: Transmission, Gametocyte investment, Conversion rate, Sex ratio, Host-parasite interactions,
Competition, Phenotypic plasticity

Background
Malaria parasites proliferate in the blood through cycles
of asexual replication, but every cell cycle a small pro-
portion of progeny commit to developing into male and
female gametocytes (which do not replicate in the host)
[1-4]. This means that, like all sexually reproducing or-
ganisms, malaria parasites face resource allocation trade-
offs between survival and reproduction and between
producing males and females [5-8]. Specifically, every
cell cycle parasites make decisions about how much to

invest in gametocytes (which are essential for repro-
duction and transmission) versus asexuals (which are es-
sential for in-host survival) and in males versus females.
These decisions are sensitive to variation in the in-host
environment [9,10].
Extensive variation in gametocyte investment (also

known as the ‘conversion rate’ or ‘reproductive effort’)
and sex allocation (proportion of male gametocytes) of
Plasmodium spp. has been observed across different
species, strains, and during infections [10-18]. Under-
standing variation in gametocyte investment and sex ra-
tio (collectively referred to as ‘reproductive strategies’)
is important because they are key fitness-determining
traits, shaping survival within hosts and the success of
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transmission to new hosts [19-21]. Experiments using
rodent malaria parasites in vivo and Plasmodium falcip-
arum in vitro suggest that parasites alter investment in
gametocytes and their sex ratio in response to: changes in
red blood cell (RBC) resource availability [12,18,22-24],
host derived transmission blocking immune (TBI) re-
sponses [25-28], competition from con-specific genotypes
in mixed infections [16,25,29,30] and, drug treatment
[11,13,14,31-35]. Observational data from natural infec-
tions also suggests that P. falciparum sex ratios and
gametocyte investment differ between single and mixed
infections and are altered in response to variation in
RBC density [36].
Evolutionary theory offers explanations for why para-

sites adjust their reproductive strategies in response to
the changing environmental conditions encountered in
the host [10,20,37-39]. For example, parasites increase
gametocyte investment in response to anaemia, reticulo-
cytes and exposure to sub-lethal anti-malarial therapy
[11,13,18,23,32,33,40,41]. This has been interpreted as a
strategy of ‘terminal investment’ during extreme stress
[42]: investing heavily in gametocytes maximizes transmis-
sion potential in a situation likely to be lethal (e.g., before
the infection is cleared or the host dies) [11,13,32]. How-
ever, recent evolutionary theory predicts that this may be
an oversimplification and that less severe stress induces
parasites to reduce investment, as a strategy of ‘reproduct-
ive restraint’ [39]. Reproductive restraint is predicted to fa-
cilitate in-host survival and therefore future transmission
opportunities [39]. Empirical work supports these pre-
dictions, revealing that when parasites experience com-
petitive suppression, RBC limitation, and low doses of
anti-malarial drugs, they reduce gametocyte investment
[14,16,30]. The sex allocation decisions of parasites are
sensitive to many of the same factors as gametocyte in-
vestment. For example, different sex ratios bring the
highest fitness returns in single- versus mixed-genotype
infections [6,25,43-46] and when hosts are mounting
immune responses that differentially affect male and fe-
male gametocytes [47]. Experiments with Plasmodium
chabaudi reveal that sex ratios are precisely allocated
according to the number of co-infecting genotypes and
their relative representation within a mixed-genotype
infection [25]. Therefore, sex ratio data suggest that
parasites can determine the genetic diversity of their in-
fections and measure the number (or replication rate)
of asexual stages belonging to their genotype [25].
Whilst evolutionary theory can explain why parasites

adjust investment into gametocytes and their sex ratio, it
does not explain how they do so. Whether parasites
identify and respond to individual factors (e.g., RBC
density and age structure, the presence of competing
parasites and the dose of drugs), or the overall impact
the environment has on their proliferation rate (i.e.,

‘state’) is not known [21]. A further complication is that
the in-host environment is complex and many factors
change simultaneously. For example, both anaemia and
immunity develop as parasite number increases [26,48],
competition in mixed infections brings RBC limitation
and suppresses asexual proliferation [9,49-51], and dif-
ferent drugs kill parasites in dose-dependent ways and
can alter anaemia [52]. For the parasite, more accurate
information may be obtained from directly measuring
individual environmental factors, but measuring changes
in overall state may be the most efficient strategy, as it
does not require the assimilation of information from
multiple environmental variables that could elicit contra-
dictory parasite responses [21].
The experiments presented here investigate the cues

that parasites use to make their reproductive decisions
by examining whether the gametocyte investment and
sex ratio of a single clone infection change in response
to material (‘cues’) derived from uninfected RBCs, RBCs
infected with con-generic parasites, and RBCs infected
with a con-specific genotype. The experiments were
designed to build on previous work [16,25] to more
specifically test ‘what’ parasites sense in their in-host
environment. For example, in previous experiments
conversion rates [16] and sex allocation [25] were com-
pared in single and mixed genotype infections to ask
whether parasites respond to in-host competition.
However, numerous factors vary between single and
mixed infections (e.g. anaemia, the age structure of
RBCs, the concentration and balance of cytokines and
the density of parasites) in complex ways. This makes
it difficult to pinpoint exactly which factor(s) parasites
are responding to. Furthermore, these changes in the
in-host environment offer different opportunities and
constraints to parasites that could be incorrectly inter-
preted as a parasite response. For example, parasites
may not respond directly to anaemia, but may appear
to do so, because a lack of preferred RBCs available for
parasites to invade could directly interfere with their
replication rate. The experiments presented here were
designed to minimize the problem of simultaneously
changing multiple aspects of the in-host environment,
with the aim of getting closer to identifying the factor(s)
which parasites are sensitive to.

Methods
Hosts and parasites
The rodent malaria parasite P. chabaudi, genotypes AJ
and ER [53] were used. These wild-type clonal genotypes
were originally isolated from areas where mixed infec-
tions were frequent [54]. Male MF1 mice, between ten
and 12 weeks of age (in-house supplier, The University
of Edinburgh), were kept in groups of two to five under
a 12-hour light/dark cycle, at 21°C and provided ad
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libitum with food and water containing 0.05% para-
aminobenzoic acid (PABA); a growth factor for parasites.
Dynamics of the P. chabaudi AJ infections were moni-
tored when exposed to treatments consisting of material
derived from self, non-self (genotype ER), and RBCs
(detailed below and in Table 1). AJ was chosen as the
focal genotype, because it has been shown to respond to
competition from unrelated strains with large changes
in gametocyte investment and sex ratio [16,25]. All pro-
cedures were carried out in accordance with the UK
Home Office regulations (Animals Scientific Procedures
Act 1986) and approved by the ethical review panel at
The University of Edinburgh.

Cue treatments
The experiment consisted of five treatment groups that
received different cues injected into hosts (Table 1). The
cue treatments, and the acronyms they are hereafter re-
ferred to as, are: (i) unmanipulated control, ‘C’; (ii) unin-
fected whole RBCs control, ‘U’; (iii) uninfected lysed RBCs,
‘UL’; (iv) AJ-infected lysed RBCs, ‘AJ’; and, (v) ER-infected
lysed RBCs, ‘ER’. Note that these cues do not include the
administration of additional live self (AJ) or competing
(ER) parasites, nor do they directly affect the amount of
RBC resources available to the focal AJ parasites. This
avoids the potential problem of incorrectly interpreting a
change in gametocyte investment or sex ratio as a parasite
strategy when, for example, competition limits the avail-
ability of RBCs for gametocyte development, or induces
immunity that increases gametocyte mortality.
The use of lysed P. chabaudi infected RBCs was in-

spired by recent demonstrations that asexual stages
contain products that are packaged into ‘exosomes’ or
‘microvesicles’ to stimulate sexual differentiation in re-
cipient parasites [55,56]. AJ infected RBCs (AJ) and ER
infected RBCs (ER) were chosen to examine whether
parasite products can be used to discriminate kin from
non-kin (i.e., determine the presence of a con-specific
genotype) in mixed infections, as suggested by previous
experiments [16,25,30,57]. It is also possible that the high
concentration of parasitized material in the AJ and ER
cues mimicked a high density infection or high parasite

mortality. Lysed, uninfected RBCs (UL) were intended to
act as a control for the lysed, parasitized material, to dis-
tinguish whether any responses to the AJ and ER cues
were due to parasite products or the lysed RBCs them-
selves. It is also possible that the administration of lysed
uninfected RBCs mimics anaemia because many unin-
fected RBCs are lysed during an infection and gametocyte
investment and sex ratio correlate with RBC resource
availability [9,18,23]. Cells (RBCs and parasites) and the
serum of the blood they were collected in were present in
the cues. This was to maximize the chance that the cue
material contained all potentially relevant factors, for ex-
ample molecules released from inside cells, membrane
components, or immune factors in the plasma.
To prepare the cue material, eight mice were infected

via intraperitoneal (IP) injection with 1 × 106 AJ parasit-
ized RBCs, and eight separate mice with 1 × 106 ER par-
asitized RBCs; both passaged from donor mice. When
these infections reached their peak densities (on day 7 or
8 post infection (PI)), blood (infected with parasites at
ring and trophozoite stages) was extracted from anaes-
thetized mice via cardiac puncture. Total blood volume,
RBC density and parasite density were recorded for each
mouse. The AJ and ER infected blood was pooled separ-
ately. The density of parasites in the pooled blood for each
strain was similar; for AJ this was 1.61 × 109 parasitized
RBCs/ml of cue and for ER-infected blood this was 1.31 ×
109 parasitized RBCs/ml of cue. RBC densities were also
similar, with an average RBC density for the AJ cue of
5.14 × 109 RBCs/ml blood and 4.77 × 109 RBCs/ml
blood for the ER cue. Blood from naïve mice was collected
for the UL cue. The RBC density for blood from naïve
mice was much higher (9.06 × 109 RBCs/ml blood) than
for the AJ- and ER-infected mice. Therefore, to ensure
RBC density was consistent across all cues, the blood for
the UL cue was diluted with serum from uninfected mice,
to give a final RBC density of 4.53 × 109 RBCs/ml blood.
For each of the cue treatment groups requiring lysed ma-
terial (AJ, ER, UL) the cues went through four cycles of
freeze–thaw, to ensure lysis of RBC and parasite mem-
branes. Lysed cues were confirmed not to contain any live
parasites capable of initiating an infection prior to the

Table 1 Summary of cue treatment groups, sample sizes, rationales, and classifications

Cue treatment N Rationale Classification

Treatment Lysed parasites Lysed RBC

Control 5 No-treatment control for the stress of handling and injections C NP NL

Uninfected RBC 5 Control for the stress of handling and injecting the host with blood U NP NL

Uninfected lysed RBC 10 To test for a response to RBC debris UL NP L

AJ-infected lysed RBC 10 Compare AJ to UL to test for a response to high density of self AJ P L

ER-infected lysed RBC 10 Compare ER to AJ to test for a response to non-self ER P L

The analysis involved comparing individual cue treatments and comparing treatments grouped in different ways to test whether parasites respond to lysed
parasite material (P vs NP) and/or to lysed RBC material (L vs NL) . N = number of mice that received a particular treatment.
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experiment, as follows. Three naïve mice each received
2 × 100 μl IP injections of the AJ cue with a four-hour
gap between injections. PCR analysis of blood DNA
samples [58] taken from the three mice confirmed that
no parasite material was present in the blood 48 hours
after injection of the cue and no infections appeared
over the subsequent two weeks. Finally, for the U cue
treatment group, blood was obtained via cardiac puncture
from a naïve mouse immediately before it was injected as
a cue.
On treatment days, 2 × 100 μl of cue material was

administered to hosts via IP injection, with a four-hour
gap between the injections. For the AJ cue, each host re-
ceived a total of 1.03 × 109 lysed RBCs, of which 3.21 ×
108 were parasitized. For the ER cue, each host received
a total of 9.53 × 108 RBCs, of which 2.62 × 108 were par-
asitized. The lysed parasite material that was adminis-
tered in both the AJ and ER cues was at least at the
density that is typically observed at the peak of live AJ
infections (assuming some cue material is cleared by in-
nate immune factors before reaching the bloodstream).
For example, the mean parasite density at the peak of
infection for the control group, in cohort 2, of this
experiment was 5.95 × 107 parasites/ml blood. The cue
administration regime (2 × 100 μl IP injections), with a
four-hour gap between injections was chosen from pilot
studies because it results in parasite material being de-
tectable (by PCR) in the blood from 20 minutes and up
to 24 hours post administration of the first cue; ensur-
ing that cues are present in the bloodstream during the
ring and trophozoite stages of the asexual cycle. Expos-
ing a large proportion of the asexual cycle to cue treat-
ments was necessary, because it is not known which
stage is responsible for detecting the environmental sig-
nals that influence gametocyte investment and sex ratio
decisions.

Experimental design
Two cohorts, each containing 40 mice, were used to
compare the effect of the cues administered during the
pre-peak phase (day 4 PI; cohort 1) and post-peak phase
(day 10 PI; cohort 2) of AJ focal infections (Table 1).
Whilst transmission can occur throughout P. chabaudi
infections, these time-points were chosen specifically be-
cause previous studies have revealed that this is when
the largest effects of mixed-genotype infections on gam-
etocyte investment and sex ratio have been observed
[16,25]. On day 0, all mice were infected with 1 × 106 AJ
parasitized RBCs via IP injection, and mice were ran-
domly allocated to the cohorts and cue treatment
groups. Gametocyte density and sex ratio were examined
on the days of cue administration to verify that there
was no significant variation across treatment groups that
could confound the detection of parasite responses. For

P. chabaudi, it is thought that committed parasites dif-
ferentiate into gametocytes in the cycle following the de-
tection of a cue, that gametocytes require approximately
48 hours to reach maturity, and gametocytes remain in-
fectious for a further 24 hours [33]. Therefore, to cover
the period over which the focal AJ parasites could detect
cues, adjust their reproductive strategies in response,
and for the resulting gametocyte investment and sex ratios
phenotypes to be detected, infections were monitored over
the three days (i.e., three asexual cycles) following cue
administration. To check whether aspects of the in-host
environment (known to influence reproductive strategies,
which could confound parasite responses to the cues
given) varied across the treatment groups, the densities of
RBCs, asexual stages and the proportion of RBCs that
were reticulocytes were also monitored for three days post
cue administration. The experiment was designed so that
the responses to all cues could be compared to each other,
and so that some cues could be combined to test for gen-
eral responses to lysed parasites and/or lysed RBCs by
grouping cue treatments into those containing parasite
material (‘P’) or not (‘NP’), and those containing lysed
RBC material (‘L’) or not (‘NL’), (Table 1).

Data collection and analysis
Blood samples (taken from tail snips) were collected for
thin smears (to count reticulocyte proportion), to measure
RBC densities (using flow cytometry, Beckmann Coulter
counter), and for DNA and RNA to quantify parasites,
gametocytes and sex ratios. Samples were collected
daily, from day 2 to day 15 PI for both cohorts, but ana-
lyses were restricted to day 4 to day 7 PI for cohort 1,
and day 10 to day 14 PI for cohort 2. Mouse weight was
monitored every other day for both cohorts. All samples
were obtained in the morning when parasites were at
ring stage, before DNA replication for the production of
daughter progeny had occurred. The density of reticulo-
cytes was calculated from examination of blood smears
and coulter count readings. DNA and RNA were ex-
tracted from blood samples using the ABI Prism 6100
Nucleic Acid PrepStation and the Bloodprep chemistry
(for DNA, Life Technologies) or total RNA chemistry
system (RNA, LifeTechnologies) as described in [58].
cDNA was generated from RNA and quantitative PCR
was used to quantify DNA or cDNA, according to the
protocols outlined in [58]. Real-time PCR was performed
a) on DNA using CG2 primer pairs [30] to quantify asex-
ual parasites, b) on cDNA using CG2 primer pairs to
quantify total gametocytes, and, c) on cDNA using MG8
primer pairs to quantify male gametocytes, according to
the protocols outlined in [58]. Sex ratios were calculated
by dividing the number of male gametocytes by the total
number of gametocytes in any given sample.
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Data were analysed using R version 3.0.2 [59]. Response
variables were log transformed (gametocyte density) or
arcsine square root transformed (sex ratio) to meet the
assumptions of normality. ANOVAs were performed to
compare RBC densities, reticulocyte densities and asexual
densities across cue treatment groups. Comparisons were
made on the day of cue administration before cues were
given, and for the following three days. The cumulative
gametocyte densities for three days post cue administra-
tion were used to compare gametocyte investment deci-
sions across treatments. In this case, it was appropriate to
use gametocyte density as a measure of gametocyte invest-
ment because asexual densities did not vary significantly
across the treatment groups before cue administration
(see Table 2). This means that any observed differences in
gametocyte density must result from different levels of
gametocyte investment (i.e., given that all else is equal,
variation in gametocyte densities can only result from vari-
ation in investment in response to cues). This approach
also avoids the difficulties of accurately calculating gam-
etocyte investment [21], especially when the time period
between parasites detecting cues and their response being
measurable is uncertain. Similarly, for sex ratio, the time
between parasites detecting cues and their response being
measurable is uncertain, so the mean sex ratio for the
three days post cue administration was compared across
groups. Finally, Welch’s T test was used to compare the ef-
fects of parasitized versus non-parasitized cues and lysed
versus non-lysed cues on cumulative gametocyte densities
and mean sex ratios for both cohorts 1 and 2. The number
of samples analysed varied between tests because (a) some
mice died during the experiment, and (b) total and male
gametocyte densities below the lower limits of detection
for the PCR were excluded, because quantification was
unreliable.

Results
Asexual densities and in-host environmental variables
Asexual density, RBC density, and the proportion of
RBCs that are reticulocytes all correlate with reproduct-
ive decisions and so variation in these parameters across

treatment groups could confound any responses to the
cue treatments. However, there was no significant
variation in these parameters across treatment groups,
either before cue administration, or over the subsequent
three-day period, for either cohort (Table 2, Additional
file 1: Figure S1).

Gametocyte investment
Gametocyte densities were not significantly different
between treatment groups either pre peak of infection
(cohort 1) or post peak (cohort 2) on the days of cue
administration (Figure 1A and Table 2). This result,
together with the validation that asexual densities and
in-host environmental variables were not significantly
different prior to cue administration means that, in this
study: gametocyte density is synonymous with gameto-
cyte investment. For the three days following cue ad-
ministration, there were no significant differences in
cumulative gametocyte densities between the five cue
treatment groups in either cohort 1 or cohort 2 (Figure 1A
and Table 2). When treatments were grouped to compare
the effect of cues containing parasitized (P) versus non-
parasitized (NP) material, there were no significant differ-
ences in gametocyte densities in cohort 1 (t (35.8) = 0.83,
p = 0.41) (Figure 1B). However, in cohort 2, gametocyte
density was significantly 50% lower in infections that re-
ceived parasitized cues (378 ± 75 gametocytes/μl blood),
compared to those that received non-parasitized cues
(753 ± 125 gametocytes/μl blood), (t (22.9) = −2.19, p =
0.04) (Figure 1B). Finally, when treatments were grouped
to compare cues containing lysed (L) or non-lysed (NL)
material, there were no significant differences for cohort
1 (t (12.8) = 0.12, p = 0.91) or cohort 2 (t (6.6) = −1.47,
p = 0.19) (Figure 1C).

Sex ratio
Sex ratios (proportion of male gametocytes; Figure 2A)
were not significantly different between cue treatment
groups for cohort 1 or cohort 2 on the days of cue
administration (Table 2). Therefore, as for gametocyte
density, there was no pre-existing significant variation in

Table 2 Summary of ANOVA analyses

Cohort 1 Cohort 2

Prior: day 4 Post: days 5-7 Prior: day 10 Post: days 11-13

Asexual density F4, 34 = 1.13, p = 0.36 F4, 34 = 0.79, p =0.54 F4, 25 = 0.59, p = 0.68 F4, 24 = 0.14, p = 0.97

RBC density F4, 34 = 1.00, p = 0.42 F4, 34 = 1.70, p = 0.17 F4, 28 = 1.62, p = 0.20 F4, 24 = 0.45, p = 0.77

Reticulocyte proportion F4, 34 = 1.05, p = 0.40 F4, 34 = 0.32, p =0.86 F4, 28 = 0.77, p = 0.56 F4, 24 = 1.53, p = 0.23

Gametocyte density F4, 34 = 0.17, p = 0.95 F4, 34 = 0.39, p = 0.81 F4, 28 = 1.60, p = 0.20 F4, 20 = 1.73, p = 0.18

Sex ratio F4, 31 = 1.27, p = 0.30 F4, 34 = 0.60, p = 0.67 F4, 28 = 0.63, p = 0.64 F4, 26 = 0.22, p = 0.93

Asexual density and the in-host environmental parameters of RBC density and proportion of reticulocytes did not vary significantly across the treatment groups -
either prior to, or post cue administration, in either cohort. Furthermore, gametocyte density and sex ratio did not vary significantly prior to cue administration.
This means that the effects of the cue treatments were not confounded by unintended variation in the in-host environment or pre-existing variation in
gametocyte density and sex ratio (see also Additional file 1: Figure S1).
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sex ratios that could have confounded any changes in
sex ratio following the cue treatments. For the three
days following cue administration there were no signifi-
cant differences in mean sex ratios between the five
treatment groups in cohort 1 or cohort 2 (Figure 2A and
Table 2). When cue treatments were grouped to com-
pare the effect of parasitized (P) versus non-parasitized
(NP) material, there were no significant differences in
mean sex ratio in cohort 1 (t (36.7) = 0.66, p = 0.51), or
in cohort 2 (t (27.8) = −0.35, p = 0.73) (Figure 2B). How-
ever, when treatments were grouped to compare the

effects of cues containing lysed (L) or non-lysed (NL)
material, there was a borderline significant increase in sex
ratio (of 45%) in infections that received lysed material
(0.11 ± 0.02), compared to those that received non-lysed
cues (0.06 ± 0.01) in cohort 1 (t (27.0) = 2.04, p = 0.05), but
not in cohort 2 (t (9.87) = −0.13, p = 0.90) (Figure 2C).

Discussion
The experiments presented here reveal that: (i) gameto-
cyte investment is reduced by 50% in response to lysed
material containing parasites (P) compared to material
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Figure 1 Plasmodium chabaudi AJ gametocyte density dynamics. (± SEM) from the day of administration of five cue treatments: C: control,
U: uninfected RBCs, UL: uninfected lysed RBCs, AJ: AJ infected lysed RBCs and ER: ER infected lysed RBCs). Grey bars indicate the days when cues
were administered - on day 4 PI for cohort 1 (left) and day 10 PI for cohort 2 (right) (A); cumulative gametocyte densities (± SEM) for three days
post treatment with cues containing parasitized material (P: AJ, ER) or non-parasitized material (NP: C, U, UL) for cohort 1 (left) and for cohort 2
(right: where gametocyte density was significantly lower in the P group than NP group) (B); cumulative gametocyte densities (± SEM) for three
days post treatment with either lysed RBC material (L: UL, AJ, ER) or non-lysed material (NL: C, U) for cohort 1 (left) and cohort 2 (right) (C).
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without parasites (NP); (ii) the change in gametocyte in-
vestment in response to parasitized material occurs post
peak of infections, but not during the growth phase;
(iii) there was a borderline significant increase (45%) in
the proportion of male gametocytes in infections given
lysed (L) compared to non-lysed (NL) material; and,
(iv) the potential sex ratio adjustment in response to
lysed material only occurred in the growth phase of

infections. The following paragraphs discuss how these
results compare to studies of human and rodent infec-
tions that report changes in sex ratio and gametocyte
investment in response to variation in RBC resource
availability, drugs, competition, and parasite density
[11-16,18,23-25,29,31-34].
In the post-peak phase of infections, why do parasites

make different gametocyte investment decisions when
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exposed to material derived from non-parasitized (NP)
blood compared to parasitized blood (P, Figure 1B)?
Gametocyte investment is lower in the P group com-
pared to NP group which suggests that either the para-
sites in the P group are adopting reproductive restraint
(i.e., actively reducing investment) or the parasites in the
NP group are making a terminal investment (i.e., actively
increasing investment). The former scenario is the most
likely for the following reasons. When parasites are faced
with adverse, but not lethal, circumstances either due to
resource limitation or death rates that do not exceed the
capacity for replication, they are predicted to adopt a
strategy of reproductive restraint [19,21,39]. Lysed para-
site material in the P group could signal that many para-
sites are being killed (e.g., due to immune attack or
drugs) and reproductive restraint enables the replication
rate to exceed the death rate. The ability to predict future
scenarios may seem highly sophisticated for parasites, but
this is one of the main evolutionary drivers of adaptive
phenotypic plasticity [60,61]. Preparing for environmental
change in advance avoids fitness costs incurred by delays
involved in waiting for the environment to change and
then reacting, or not reacting to environmental change at
all [62]. Second, the gametocyte investment of parasites in
the NP group appears too low to be explained by terminal
investment. This is because the NP group includes the
unmanipulated control group and most studies use such
infections as a baseline to demonstrate that increased
investment (i.e., terminal investment) occurs in response
to drugs. In summary, gametocyte investment appears to
be reduced in response to material from parasitized blood,
which is consistent with parasites adopting reproductive
restraint to maximize survival during stressful, but not
lethal, challenges during infections [14,16,30].
Instead of parasites actively adjusting gametocyte invest-

ment, could differential immune responses in the P and
NP groups explain the observed differences in gametocyte
investment? It is possible that the administration of lysed
parasitized material induced the host to produce the pro-
inflammatory cytokines interferon gamma (IFN-gamma)
and tumour necrosis factor (TNF), which are known to be
involved in killing gametocytes [63-65]. However, data
from in vitro studies suggest this would be unlikely, as the
induction of TNF and IFN-gamma is much reduced when
exposed to lysed parasitized RBCs, compared with expos-
ure to live intact parasitized RBCs [66-69]. Furthermore,
the induction of TNF by lysed parasites in culture is negli-
gible when the parasitized erythrocytes were harvested
and lysed at ring and/or trophozoite stages (compared to
lysis at schizont stage) [68]. As such, the P group (a lysed
mixture of ring and trophozoite infected erythrocytes) is
unlikely to have induced TNF to a level that was sufficient
to clear gametocytes. Furthermore, the gametocytocidal
activity of TNF is rapid [63] and would, therefore, have

produced a sharp drop in the P group on day 11 only,
which was not observed. Finally, the cue treatments were
the same in cohort 1 and 2 and so should elicit the same
immune responses. If these responses killed gametocytes
then fewer gametocytes would have been observed in
the P group of cohort 1 as well, but this was not the
case.
The question of why parasites only adopted reproductive

restraint in response to parasite material in the post-peak
phase (i.e., in cohort 2) of infections requires further work.
This timing is consistent with previous studies showing
that the difference in gametocyte investment between par-
asites in control and sub-lethal conditions increases over
time [14,16]. Furthermore, the timing suggests a biologic-
ally significant difference in phenotype with real epidemio-
logical relevance, as it is at this later stage of P. chabaudi
infections where transmission is typically most successful
in laboratory studies [70]. Furthermore, a twofold reduc-
tion in gametocyte density in P. falciparum infections can
have a significant impact on the proportion of mosquitoes
infected [71]. The lack of any effect in the pre peak phase
of the infection may be due to the difficulty in detecting
small effects at low parasite densities (as is the case early
in infections), or because parasites become increasingly
able to detect, or respond to, environmental changes as
infections progress. The latter is perhaps the most par-
simonious explanation because cumulative gametocyte
densities are very similar between all of cohort 1 and the P
group of cohort 2 (Figure 1B; (t (41.5) = −1.02, p = 0.31).
This may reflect a necessity to maintain a baseline level
of gametocyte production to ensure no transmission op-
portunity is wasted, even during reproductive restraint.
Why might parasites make different sex ratio decisions

when exposed to material derived from lysed cells (L;
parasites and RBCs), and why is this only observed in
the growth phase of infections? Further work is required
to confirm whether parasites do produce a less female-
biased sex ratio when exposed to lysed cues (because
significance was borderline), but this pattern is predicted
by evolutionary theory and consistent with other data
[25,46,72]. Lysed material could either represent host
anaemia, or the material could have stimulated innate host
immune responses that reduce the fertility of males more
than females. In these situations, males become a limiting
resource for fertilization and so parasites are predicted to
partially compensate by increasing their investment in
male relative to female gametocytes [25,46,47,72-74]. That
extra males are required to ensure females are fertilized
when transmission blocking immune factors have more
severe effects on males is intuitive, but why are more
males required when hosts are anaemic? Each male gam-
etocyte can produce up to eight gametes, but each female
only produces one gamete, which means that the number
of parasite progeny is maximized at a ratio of eight female
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gametocytes to one male gametocyte [6,44]. However,
when there are eight-fold fewer male gametocytes circulat-
ing in the host and gametocyte density is very low, or
hosts are anaemic, there is a stochastic risk that blood
meals do not contain enough males to ensure the females
are fertilized [46,72]. Therefore, if lysed material repre-
sents anaemia and/or immune factors, parasites will be
most sensitive to these scenarios when gametocyte
density is low (i.e., in cohort 1; Figure 1C). In summary,
similarly to the gametocyte investment results, the sex
ratio data suggest lysed cell material (parasitized and
non-parasitized) is interpreted as a cue for adverse
conditions.
Based on previous observations of mixed genotype in-

fections and evolutionary theory [6,15-17,25,39,44,75],
parasites were predicted to adopt different reproductive
strategies when exposed to cue material derived from
self (AJ) versus a non-self, con-specific genotype (ER).
However, there were no significant differences either in
gametocyte investment (Figure 1A) or sex ratio (Figure 2A)
when parasites were exposed to AJ versus ER cue material,
in either cohort. This could be due to a number of (non-
mutually exclusive) reasons. First, there may not have been
a high enough concentration of lysed ER parasite material
in the bloodstream in the ER group for live AJ parasites to
discriminate kin from non-kin. Alternatively, the cue to
discriminate kin may be something that is only actively se-
creted by live parasites in direct response to competitors
(which were not present in the cue-generating infections),
or degraded in the freeze-thaw process. For example,
malaria parasites could employ a similar quorum-sensing
strategy to that observed in bacteria [76,77] and use
microvesicles [56] or exosome-like vesicles [55] derived
from infected RBCs as a carrier for the cue. However,
microvesicle or exosome structures may have been
destroyed during cue preparation lysis. The cue treat-
ments were designed simply to test whether parasite
responses could be elicited, rather than to identify pre-
cisely what they are detecting, so it is possible that the
live AJ parasites could discriminate kin, but the AJ and
ER cues also represented other scenarios (e.g., a high
death rate), that provided a stronger stimulus and re-
sulted in the responses detected.

Conclusions
Despite decades of investigating gametocytes, how the
genes and molecular pathways underpinning commit-
ment to gametocytes and sexual differentiation interact
with environmental sensing has proved elusive [2,3,78],
although recent characterization of the ApiAP2 gene in
P. falciparum [UniProt:PFL1085w/PF3D7_1222600] and
Plasmodium berghei [PlasmoDB: PBANKA_143750] is
promising [79,80]. The difficulty may be partly due to dif-
ferent genes and pathways being involved in: (a) sensing

environmental cues relevant to decisions about reproduct-
ive strategies; (b) processing information and making
decisions; and, (c) producing the gametocyte investment
and sex ratio phenotypes resulting from the decisions
made [21]. Breaking down treatments to isolate the
molecule(s) used as a cue(s) within the morass of lysed
cells and serum used in this study could facilitate further
characterization of molecular mechanisms underpinning
commitment and differentiation into gametocytes. Repeat-
ing the experiments presented here in vitro, to expose syn-
chronous parasites at different time points within the cell
cycle could reveal which developmental stages are respon-
sible for sensing and responding to changes in the in-host
environment. More broadly, it may be possible to harness
cues to ‘trick’ parasites in an infection into producing ga-
metocytes instead of asexuals, or only producing gameto-
cytes of a single sex [21,81]. The former strategy could be
useful for treating returned travellers in hospital (without
malaria vectors) because the virulence of infections will be
reduced, and the latter strategy would prevent fertilization
and subsequent transmission. Finally, precisely identifying
the cues that parasites use to make reproductive decisions
is required to quantify the costs and benefits (fitness
consequences) of their strategies, which is central to un-
derstanding their evolution.

Additional file

Additional file 1: Figure S1. Plasmodium chabaudi AJ infection
dynamics: mean (± SEM) for each cue treatment (C: control, U:
uninfected RBCs, UL: uninfected lysed RBCs, AJ: AJ-infected lysed RBCs
and ER: ER-infected lysed RBCs) administered on day 4 PI for cohort 1
(left) and day 10 PI for cohort 2 (right) (indicated by grey bars). RBC
density dynamics (A); proportion of RBCs that are reticulocytes (B) and
asexual density dynamics (C). Maximum values for the Y axes differ
between cohort 1 and cohort 2 to allow clear visualization of the range
of data for each cue treatment group.
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Axonemes form the core of eukaryotic flagella and cilia, perform-
ing tasks ranging from transporting fluid in developing embryos
to the propulsion of sperm. Despite their abundance across the
eukaryotic domain, the mechanisms that regulate the beating
action of axonemes remain unknown. The flagellar waveforms are
3D in general, but current understanding of how axoneme com-
ponents interact stems from 2D data; comprehensive measure-
ments of flagellar shape are beyond conventional microscopy.
Moreover, current flagellar model systems (e.g., sea urchin, human
sperm) contain accessory structures that impose mechanical con-
straints on movement, obscuring the “native” axoneme behavior.
We address both problems by developing a high-speed holo-
graphic imaging scheme and applying it to the (male) microga-
metes of malaria (Plasmodium) parasites. These isolated flagella
are a unique, mathematically tractable model system for the phys-
ics of microswimmers. We reveal the 3D flagellar waveforms of
these microorganisms and map the differential shear between
microtubules in their axonemes. Furthermore, we overturn claims
that chirality in the structure of the axoneme governs the beat
pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53–72],
because microgametes display a left- or right-handed character on
alternate beats. This breaks the link between structural chirality in
the axoneme and larger scale symmetry breaking (e.g., in devel-
oping embryos), leading us to conclude that accessory structures
play a critical role in shaping the flagellar beat.

digital holographic microscopy | low Reynolds number | ciliary and flagellar
motion | malaria transmission

Flagella and cilia are ubiquitous across the eukaryotic domain.
They perform critical roles such as the propulsion of micro-

organisms and sperm, sensory detection, and transport of fluids
in the brain (1–3). Although the appearance of motile cilia and
flagella can vary in different organisms, it is based on an un-
derlying structural motif: a cylinder of nine microtubule doublets
that move lengthwise relative to each other under the action of
dynein molecules. The peripheral doublets in the axoneme often
surround a central pair of singlet microtubules; the whole
structure is then referred to as a “9+2” axoneme. Interestingly,
motility does not seem to be contingent on the central micro-
tubules. Motile flagella with three, one, or zero central micro-
tubules (4, 5) have been reported. Dynein molecules are dis-
tributed along the length of each of the peripheral doublets
asymmetrically. Viewed from the axoneme’s basal end, the dyneins
are permanently anchored to one doublet and face its clockwise
neighbor, where they can attach and move longitudinally. This
structural chirality has been invoked as the underlying cause of
symmetry breaking in developing embryos (6). Certain “nodal”
cilia present in the early stages of development have been shown
to rotate consistently in the same direction, counterclockwise,
viewed from the basal end. The collective effect from many such
cilia is unidirectional fluid circulation within the embryo, which
has been posited to carry certain signaling molecules to their
receptors (7). This symmetry breaking has been shown to have
far-reaching consequences. Among other things, it leads to the

familiar left-right patterning of organs in the human body (e.g.,
heart to the left, liver to the right). Although the link between
functional cilia and symmetry breaking has been discussed for some
time (8, 9), the proposed link between the axoneme’s structure and
its motion is more speculative. We note that these nodal cilia do not
have a central pair of microtubules (they are “9+0” axonemes), but
the chirality in the dynein configuration is the same.
Indeed, although the structure and components of axonemes

are fairly well known, the way in which these parts interact to
produce beating action remains an open question. A range of
medical conditions can arise from cilia and flagella malfunctioning.
Understanding how beat patterns arise in correctly functioning
axonemes is a critical step in understanding these “ciliopathies”
(e.g., hydrocephalus, male and female infertility). Recent theoret-
ical investigations into the hydrodynamics of beating flagella and
cilia (10–12) have made progress in understanding the mechanical
constraints governing these structures, how they interact, and what
their optimal configurations might be. Several competing hypoth-
eses have been advanced to describe the operating principles of
a single flagellum (13–15), but these theories have only been tested
by data from conventional (2D) videomicroscopy.
Another factor complicating analysis of experimental data

arises from the choice of specimen, in that most experimental
studies have used sperm in their model systems. However, sperm
vary in morphology and demonstrate a wide variety of swimming
patterns, even among the standard models. For example, human
sperm tails beat in a quasiplanar fashion in typical physiological
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conditions (2); sea urchin sperm can adopt helical or planar
beating patterns depending on external conditions (16), or more
complex patterns in proximity to a surface (17); and quail sperm
exhibit a self-similar hierarchy of meandering structures (18).
The underlying “engine” is a 9+2 axoneme in all cases, but each
has a particular set of accessory structures, such as the fibrous
sheath found in human sperm (2). These structures alter the
shape (and therefore the hydrodynamics) and introduce passive
mechanical constraints to the axoneme, complicating modeling
efforts. The biflagellated alga Chlamydomonas reinhardtii is an-
other model system for eukaryotic flagella, for which a number of
mutant strains are available. However, in the case of C. reinhardtii,
the large cell body (diameter of ∼10 μm) is coupled hydrody-
namically to the flagella, influencing their motion (19, 20).
We have overcome these problems by identifying a unique

model system to give uncomplicated access to the beat pattern of
a 9+2 axoneme. In recent years, proteomic surveys have revealed
that the (male) microgametes of the rodent malaria parasite
Plasmodium berghei may be a suitable candidate (21). In malaria
and related Apicomplexan parasites, male and female cells (game-
tocytes) are taken up into the midgut when an insect vector, typ-
ically a mosquito, takes a blood meal from an infected host. In the
midgut, gametes are rapidly generated (each male gametocyte
produces up to eight microgametes within 10–20 min), and mi-
crogametes must find and fertilize female gametes within 30–60
min for the parasites to reach the next stage in their life cycle (22)
(SI Text). The microgametes are assembled in the cytoplasm of the
male cells and have no intraflagellar transport apparatus, such as

that found in the alga C. reinhardtii (23). In fact, they are struc-
turally simple microorganisms (sketches in Fig. 1 A–C). Wass et al.
(21) record that the microgamete contains just four “compart-
ments”: the nucleus, the axoneme, the cell membrane, and the
cytoplasm. It therefore represents a type of “sperm” stripped down
to a bare minimum of functioning components. Mitochondria,
accessory structures, the intraflagellar transport apparatus, and
a large accompanying “cell body” are all absent, making it an ex-
cellent limiting-case model system for understanding the axoneme.
This is of particular interest in light of recent experiments where
beating action was obtained from “artificial axonemes” composed
of a small set of components, either robotic (24) or those con-
taining just three key ingredients (microtubules, motors, and cross-
linkers) plus an energy source (3, 25). The microgametes have
a basal body composed of nine microtubule singlets (26), but un-
like most sperm, there is no clearly defined “head” structure. The
ultrastructure of the microgametes uncovered by cryo-EM studies
(27) shows nuclear material distributed along the axoneme over
a length of 1–2 μm. This reduces the effective cross-section of the
microgamete, which may be an adaptation to facilitate easy
movement between tightly packed RBCs in the mosquito midgut
(SI Text).
To identify the mechanical processes underlying the beat

pattern and the resulting large-scale swimming dynamics, accu-
rate data on the shape and motion of the flagellum are required.
Unfortunately, the beat frequency (typically 10–100 Hz) and the
3D nature of the waveform have proved too challenging for
conventional approaches. Digital holographic microscopy (28,

A

B

C

D E

G H

F

JI

Fig. 1. Longitudinal (A) and angled (B) cross-sectional illustrations show the simplicity of a typical P. berghei microgamete. The sketches are based on
electron micrographs in studies by Straschil et al. (27) and Sinden et al. (26), and are labeled to show the key features of the flagellum. (C) Cross-sectional
schematic diagram of a microgamete detailing the elements common to a typical 9+2 axoneme. The flagellar waveform is driven by microtubule doublets,
which, in turn, are driven by the shearing force generated by the dynein arms. (D) Raw holographic data of a P. berghei microgamete. (Scale bar = 3 μm.) (E)
Reconstructed volume pixels (voxels), derived from data in D, encompassing the volume occupied by the microgamete. The z axis is the illumination direction.
(F) Segmented contour fitted to the voxel data in E. The contour length s increases from tail to head, and the purple axes show the material reference frame,
with e3 lying along the gamete center line, in each segment. (G) Quasihelical waveform. At each joint, the material reference frame rotates about a line in the
e1e2 plane, at an angle φ to the e1 axis. The e3 vector then points along the next segment. The material reference frame is thus fixed to the underlying
structure of the gamete (the microtubules), which allows us to extract the differential shear at each joint. (H) Differential shear map corresponds to the
waveform in G. In the absence of twist, the microtubules would lie parallel to the horizontal axis, at an unknown φ offset. The diagonal feature indicates that
a wave of sliding has passed circumferentially around the gamete. (I) Example of a quasiplanar waveform. (J) Differential shear in the flagellum (analyzed in
the same way as for H corresponding to the waveform in I).
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29) allows 3D imaging at frame rates limited by the imaging
device, which is a complementary metal oxide semiconductor
(CMOS) camera in our case. As a consequence of their “mini-
mal” construction, the microgametes are relatively small objects,
∼10 μm in length (L) and 200 nm in diameter (a) (27). Their
refractive index is close to that of their surroundings, which
places them within the Rayleigh–Gans (weak) scattering regime.
In this regime, extended objects may be modeled as a superpo-
sition of scattering centers lying within the object’s volume (30).
We used the Rayleigh–Sommerfeld back-propagation method to
reconstruct the optical field away from the focal plane (31) and
the Gouy phase anomaly method (32) to localize the microga-
mete in three dimensions (details are provided in Materials and
Methods and SI Text). Unlike previous holographic studies that
have tracked the average positions of microorganisms in three
dimensions (28, 29, 33), our approach allows us to measure the
position and configuration of the subjects so as to study the
swimming strokes in detail.
The goal of this study was to measure and analyze the 3D

dynamics of the model flagellar microswimmer P. berghei. We
have developed a high-speed holographic microscope that we
use to characterize swimming behavior. Using this instrument,
we map the differential shear between microtubules in the fla-
gellum in planar and helical waveforms. We also measure dy-
namic quantities, such as the beat frequency, beat wavelength,
and wave speed, and overturn the hypothesis that chirality in the
axoneme structure results in chiral flagellar waveforms.

Results and Discussion
Differential Shear Displacement. By examining the instantaneous
3D geometry of a flagellar waveform, we measure the local dif-
ferential shear displacement (2) between opposite sides of the
axoneme, which can be used to estimate the underlying pattern
of microtubule sliding. Fig. 1 D–F shows the results of recon-
struction based on a single frame of raw data (Fig. 1D). A vol-
ume of interest (VOI) is extracted from the reconstructed optical
field (Fig. 1E), and a contour is fitted through the center of mass
of the VOI (Fig. 1F). This contour takes the form of joints (j)
connected by segments (Tj) of a constant length Δs = 0.7 μm
(more details and an error analysis are provided in SI Text). To
infer the relative sliding of the underlying microtubules, we need
to make some assumptions about the axoneme. First, we make
a typical assumption that the energetic cost of twisting a straight-
ened axoneme about its length is much higher than the cost of
bending the same axoneme (11, 34). Second, we assume that the
relative sliding is minimal (zero) at the basal body of the axoneme.
We assign a “head” and “tail” to the axoneme and locate the basal
body at the “tail”, based on observations of the release of micro-
gametes, the swimming direction, and the shape of the microor-
ganism; this is described in further detail in the section on
dynamics. We use the variable s to denote position along the fitted
contour, ranging from s = 0 (passive, “tail”) to s = L (active, “head”).
Third, we assume that only the lowest wavenumber azimuthal
modes are allowed (35). In other words, when the axoneme bends,
doublets on the inside of the bend slide forward relative to the
centerline and those on the outside slide backward; the others vary
smoothly between these extrema. With these assumptions in place,
we define a material reference frame (36) that maps to the un-
derlying microtubules, specified by the unit vectors (e1, e2, e3) (Fig.
1F). To infer structural deformations, we examine how this ma-
terial frame is transformed as we pass along the contour, from s =
0 → L. At each joint, the material frame is rotated about a vector
located in the e1e2 plane; this vector is oriented at an angle φ to the
e1 axis (Fig. 1 G and I). The material reference frame is rotated
about this line, through an angle θ, so that after the rotation, the e3
axis points along the next segment of the contour.
Given this 3D representation of the microgamete, we can map

the differential shear (2, 37), Δðs;φÞ−Δð0;φÞ. This quantity

describes the relative sliding of microtubules that produces
a particular waveform, in the absence of shearing at the basal
body [denoted Δð0;φÞ ] and twist. This highlights the regions
where peripheral microtubules would be displaced relative to the
centerline, as a function of s and position around the axoneme
circumference φ. Fig. 1 G and H shows a reconstructed frame
with a largely helical configuration, with its corresponding pat-
tern of differential shear displacement, and Fig. 1 I and J shows
a reconstructed frame with a largely planar configuration, with its
corresponding pattern of differential shear displacement. Both
of these frames were taken from the same gamete and occurred
2 s apart in a video sequence. This change in the flagellar
waveform between two relatively closely spaced times is quite
remarkable, given that waveforms are usually classified as either
planar or helical. The absence of mechanical accessory structures
in this microgamete allows a broad variety of waveforms, showing
the versatility of the bare axoneme.

Dynamics. By measuring the geometry of flagellar waveforms with
high temporal resolution (500 Hz to 1 kHz), we can examine how
flagellar beats initiate and propagate (Movies S1 and S2). As
previously observed elsewhere, the microgametes swim in two
distinctive modes, fast and slow (38). These swimming modes
appear to transport the microgamete in opposite directions, and
the forward (or fast) mode was the most prevalent. Fig. 2A shows
a spatiotemporal map of flagellar curvature during fast beating.
Vector manipulation gives the external bending angle between
consecutive segments, Tj and Tj+1, as a function of s and time.
Waves of curvature clearly propagate from head to tail as the
microgamete swims, demonstrated by light-colored bands in-
clined from the upper right to lower left. Based on the swimming
direction of the axoneme, we can infer the position of the basal

B

C

A

Fig. 2. (A) Exterior angle θ (Left), as indicated (Right), between two adja-
cent segments as a function of contour length s (micrometers) and time
(seconds). The bright bands inclined from the upper right to the lower left
show waves of curvature passing along the gamete from the “head” end
(s = L) to the “tail” end (s = 0) of the gamete. (B) Power spectrum of cur-
vature fluctuations, with harmonic components as indicated. P.S.D., power
spectral density. (C) Deviation from linear swimming speed. A straight-line
fit was performed to 4 s of center-of-mass displacement data to find a
straight line speed of 6.2 μm/s. This graph of residuals (rCM − vCMt) shows no
evidence of the beat frequency in the center-of-mass displacement.
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body: When the microgametes are released (exflagellate) from
the gametocyte, they are initially anchored within the cell by the
basal body from which they are constructed. As they swim away,
the leading “head” end of the microgamete is noticeably more
active than the trailing end. More evidence of this is given in the
section on average motility parameters, where we find that the
basal region shows a smaller average curvature (implying a higher
bending stiffness or resistance to sliding).
A curious aspect of fast beating is that the waves of curvature

propagate toward the basal body rather than away from it. To
our knowledge, this is unique among sperm documented in the
literature [although it has been observed in other microor-
ganisms, such as trypanosomes (39)]. This beat pattern may fa-
cilitate the microgamete’s exploration of a convoluted substrate
(e.g., close-packed RBCs) when searching for female gametes in
the blood meal (SI Text and Fig. S1). It is energetically efficient
to explore an environment and look for paths of least resistance
to travel along, and a recent investigation into the motility of the
parasite Trypanosoma brucei (40) has shown that swimming speed
can be enhanced by the presence of a microstructured substrate
(in that case, a 2D array of micropillars).
Fig. 2B shows the power spectrum of these curvature fluctu-

ations (averaged over all s values) with dominant harmonic
components at 11.3 Hz and 24.9 Hz. Although the beating is
clearly periodic, the displacement of the microgamete’s center of
mass does not share this periodicity and is fairly constant as
a function of time. Fig. 2C shows the deviation from a constant

swimming speed. A microgamete’s center of mass was calculated
in each frame over a period of 4 s, yielding a straight-line swim-
ming speed of 6.2 μm/s. The graph shows the deviation of the
center-of-mass position from the predicted displacement; no pe-
riodic fluctuation of the displacement is apparent.

Waveform Chirality. The 3D nature of our data allows us to obtain
quantities that are inaccessible to standard 2D microscopy. We
define a local chirality, H, as the angle between a segment (Tj)
and the plane formed by the two previous segments (defined by
Tj−2 ∧ Tj−1; Fig. 3 A and B). Fig. 3C shows a spatiotemporal map
of chirality derived from the same data as Fig. 2. The map shows
propagating waves of alternating handedness, indicated by the
sequential red and blue bands (Fig. 3C); these waves are of the
same frequency and phase as the bending waves shown in Fig.
2A. The ability to change chirality seems to be a generic feature
of microgamete motion because we observed this in every in-
dividual in our dataset (n = 24), both in fast- and slow-beating
modes. The periodic reversal is somewhat unexpected in light of
the axoneme’s structural chirality. In contrast to recent theories
and experiments suggesting that symmetry breaking in de-
veloping embryos occurs because chirality is hard-wired into the
axoneme structure (6, 7), we find no evidence of fixed chirality in
this mechanically simple axonemal flagellum. We therefore sug-
gest that, in general, mechanical accessory structures are respon-
sible for symmetry breaking. Previous studies of more complex
cells, such as sea urchin sperm (17) and trypanosomes (39), have
inferred chiral properties from differential interference contrast
(DIC) and dark-field images. However, the beat pattern of
P. berghei microgametes is more complex, with no discernible beat
plane and varying amounts of planarity in successive beats. Movie S3
has been arranged to demonstrate this aspect of motility. The con-
tour in Movie S3 has been translated and rotated so that the head
and tail points of the microgamete overlap on a straight line pointing
away from the observer. Successive beats are seen as prominences
that intersect this point, appearing as loops of varying area, according
to how helical the particular wave is. Curiously, we find no discern-
ible pattern in the orientation or shape of these waves; although
successive waves have opposite chirality, their shapes are dissimilar.
To clarify the notion of handedness in flagellar waveforms

further, Fig. 3D shows an example of a single frame of data with
a left-handed character; segments in the reconstruction in Fig.
3E have been colored according to the scheme in Fig. 3C to
indicate local chirality. Fig. 3 F and G shows raw and recon-
structed data for a purely right-handed waveform. The handed-
ness of the waveform is not easily attainable from the raw data
but may be quantified using the holographic reconstruction. The
two segments nearest the (x, y) origin in each reconstruction
(obscured in Fig. 3E) are colored black, because two preceding
segments are required to establish chirality.

Average Motility Parameters. The reconstruction of a segmented
contour enables unequivocal measurements of motility parame-
ters. In Fig. 4, we show average values of some parameters
obtained from our set of 24 individuals, moving in forward (F)
and reverse (R) directions. The frequency, wave speed, and
center-of-mass velocity are markedly dissimilar in these different
modes (Fig. 4). Interestingly, the characteristic length of curva-
ture fluctuations (“wavelength”) is similar in both cases (aver-
aging 5.6 μm in forward and 4.5 μm in reverse), which matches
the diameter of murine RBCs (4–7 μm) (41). Again, this is
suggestive that microgametes may have evolved an adaptation in
which swimming speed is enhanced by friction generated from
mechanical interactions between cells and obstacles in the en-
vironment (40) (more details are provided in SI Text).
Fig. 4E shows the average curvature hθi as a function of

contour length. We only show data from forward swimmers
because the number of reverse swimmers is smaller (n = 5

A
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C

D

F G

E

Fig. 3. (A and B) Demonstration of how we define local chirality using three
contiguous segments of the contour. H is the angle between the third seg-
ment and the plane of the first two segments. The sign is determined
as positive (right-handed) if Tj lies in the same half-space as the cross-product
Tj−2 ∧ Tj−1 and as negative (left-handed) if not. (C) Temporal pattern of local
chirality as a function of contour length s and time. The bands correspond to
those in Fig. 2A, but waves alternate in time between left- and right-handed
character. deg, degrees. (D) Raw data correspond to a left-handed waveform
with holographic reconstruction in E. (F and G) Raw and reconstructed data
for a right-handed structure. Note the superficial similarity of D and F; the
fundamental difference in the waveform is revealed only with holographic
reconstruction. The photos (D and F) are 17 μm on a side.
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compared with n = 19 for the forward swimmers). The smaller
sample size and lower beat frequency lead to inconclusive hθi
data in reverse swimmers. There is a clear head/tail asymmetry,
where the average curvature increases toward the “head” (s = L)
end of the microgamete and is independent of the actual physical
length. This adds extra support to our claim that the relative
sliding of microtubules is smaller at the trailing end of the
gamete (which contains the basal body). The curvature data are
normalized by the total microgamete length L because there is
considerable variation (14%) in the length of microgametes (L =
8.4 ± 1.4 μm) that cannot be explained by measurement error
(estimated at ±100 nm). This may be a result of variation in the
number of microtubules available, or accuracy possible, in the
short time available for microgamete synthesis.

Conclusions
We have used high-speed digital holographic microscopy to in-
vestigate the 3D dynamics of a eukaryotic flagellum. This method
allows us to characterize the waveforms and swimming behavior
of the microorganism, as well as giving insight into the action of
the underlying microtubules. In presenting our results, we also
introduce P. berghei microgametes as model microswimmers. To
our knowledge, they are the simplest naturally occurring example
of a swimming axoneme (in mechanical terms at least). As a re-
sult, they do not suffer from the shortcomings of other models,
for example, sea urchin sperm cells or the alga C. reinhardtii,
where flagella are attached to a large, hydrodynamically impor-
tant cell body (19, 20). Furthermore, the microgametes lack
mechanical accessory structures that may help to guide the fla-
gellar beat, instead allowing the axoneme to behave in a less
constrained fashion. Last, in contrast to prior assertions re-
garding a closely related structure, we find that the chirality of
the 9+2 axoneme structure does not directly transfer to the
overall beating motion. Although both left- and right-handed
waveforms have been observed in other species, the use of a
mechanically unconstrained flagellum demonstrates that there
is no inherent bias in chirality coming from the axoneme. This
result, along with the general irregularity of the beat pattern,

suggests that mechanical accessory structures play crucial but
overlooked roles in determining the dynamics of flagella. This
has implications not only for analyzing swimming behavior but
for understanding the root causes of symmetry breaking in
developing embryos.

Materials and Methods
Microgamete Preparation. We used the rodent malaria parasite P. berghei,
line 820cl1m1cl1 (42). Infections were initiated in male MF1 mice (8–10 wk
old), which had been pretreated with phenylhydrazine at 120 mg/kg (2 d
before infection) to enhance the production of gametocytes (43). Five in-
dependent infections were initiated with 107 parasitized RBCs. Infected
blood was collected by tail snip when gametocytes reached maturity (day 4
or 5 postinfection). To stimulate the differentiation of gametocytes into
microgametes for each sample, 2 μL of infected blood was added to 1 mL of
complete ookinete culture media [900ul RPMI + 100ul FCS (pH 8)] and in-
cubated at 21 °C (44). All of the work involving mice was carried according to
the Animals (Scientific Procedures) Act, 1986 and approved by Edinburgh
University.

Microscope and Optical Setup. Experiments were performed on a Nikon Ti
inverted microscope, with a 60× magnification water immersion objective
lens, as described elsewhere (32). Illumination was provided by a Thorlabs
M660L2 high-power light-emitting diode, with a peak emission wavelength
of λ≈ 660 nm and an FWHM bandwidth of ∼40 nm.

Data Acquisition. AMikrotron MC-1362 monochrome CMOS camera was used
to record video images; the camera was connected to a frame grabber card
with 1 GB of onboard random-access memory. Video data were initially
acquired at 1 kHz with an exposure time of 0.994 ms, but this appeared to be
a significant oversampling of the motion of the microgametes. In further
experiments, we decreased the frame rate to 500 Hz (1.994-ms exposure
time), which was entirely sufficient to capture the dynamics of the beating
pattern. No distinction was observed between data taken at different frame
rates. Imaging a standard reference chart allowed us to calibrate our image
sampling frequency (pixel spacing) as 4.29 pixels per micrometer.

Preliminary Image Processing. Video recordings were edited by hand to ex-
tract regions of ∼30 μm on a side with microgametes in them. An example
region is shown in Movie S4. For each reduced video recording, a back-
ground frame was obtained by averaging a series of images of the same
subregion from a period when the microgamete was not present in the
images. Pixel values in frames containing microgametes were then normal-
ized (divided) by their values in the background frames to remove the static
background contribution in the image and improve the overall signal-to-
noise ratio.

Holographic Reconstruction. From each frame, a stack of reconstructed image
planes was generated, spaced Δz = 0.233 μm apart. This resulted in an image
stack with the same sampling frequency (4.29 samples per micrometer) in x,
y, and z. An example image stack is shown in Movie S5.

Image Processing. The image stacks were then subjected to several steps of
processing. We first applied spatial bandpass filters in the x–y plane to
remove high-frequency pixel noise. We then took the intensity gradient in
the z direction, ∂I=∂z, as in previous work (32). Next, we performed a
Gaussian fit on each column of volume pixels (voxels) in the stack at par-
ticular xy coordinates [Ixy(z)] to isolate the point of highest intensity in the z
direction. This volume containing “bright” pixels, one per xy address, was
convolved with a 3D Hanning filter. The procedure of fitting and convolu-
tion was repeated. The brightest region in the volume was extracted,
starting at the voxel with maximum intensity and stepping outward until the
intensity dropped to zero. This VOI was then ready for contour fitting.

Contour Fitting. The VOI extracted in the image processing step was reduced
and then fitted piecewise with straight line segments. To reduce the size of
the VOI, each voxel within it was modeled as the source of a truncated scalar
potential, with a radial profile given by

VðrÞ=A

 
1−

� jrj
rmax

�2
!2

: [1]

This potential was evaluated at every point in the stack.

A B C

D E

Fig. 4. (A) Principle beat frequency component of forward (F) and reverse
(R) microgamete waveforms. (B) Speed at which waves of curvature propa-
gate along the microgamete (Materials and Methods). (C) Resulting char-
acteristic wavelength, found by dividing wave speed by frequency. (D) Speed
of the microgamete’s center of mass over a linear trajectory of around 20
μm. (E) Average curvature of forward-swimming gametes as a function of
the normalized contour length (contour length s/microgamete total length
L). In A–E, each point represents data from a different microgamete (from
five independent infections). The boxes in A–D represent a mean value (±
SEM) of forward and reverse swimming directions. The boxes in E represent
data binned in increments of Δs/L = 0.08 (±SEM).
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It should be noted that the VOI shown in Fig. 1E depicts the locations, but
not weights, of the voxels. Voxels near the center of this VOI have a signif-
icantly stronger weighting (A) than those at the edges. Locations where the
potential was greater than a threshold value were set to 1, and those with
lower potential were set to zero. The active voxel furthest from the center of
mass was used as a starting point, and the VOI was stepped through in
increments of Δs = 0.7 μm, tracing the locus of points that lie inside the VOI,
furthest from its surface. This chain of points (not including the starting
point) makes up the estimate of the microgamete position in each frame.

Data Analysis. Motility parameters (Fig. 4) were extracted from curvature
data similar to the representative set in Fig. 2A. To obtain beat frequency,
we found curvature as a function of time at each contour joint j and took
the power spectrum. A single data point in Fig. 4A represents the mean
power spectra over all j values for one microgamete. Wave speed was found

by examining the phase of the principal frequency component as a function
of j for each microgamete. As waves propagate along the flagellum, there is
a phase lag between consecutive joints. Thus, the wave speed was calculated
from the distance between each joint, the phase at each joint, and the
frequency. Wavelength was found by dividing wave speed by frequency. Al-
though the microgamete never truly adopts a sine-wave shape, the wave-
length is a valid characteristic length scale.
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SI Text
This document serves two purposes. First, it gives the broader
context of our measurements, as well as their implications for the
mating biology of malaria parasites. We propose how results
obtained from biochemical and genetic studies can help to answer
long-standing questions in physics by allowing an unprecedented
level of control over the structure of the axoneme. Second, given
that a new microscopy technique is used in our study, we provide
a summary of the method, along with an account of the main
sources of error.
Despite over a decade of research since sexual reproduction

was discovered as an essential requirement for the transmission of
malaria (Plasmodium) parasites, important aspects of their re-
productive behavior remain unknown (1, 2). Developing drugs
and/or vaccines that prevent transmission by disrupting mating
are major goals (3), and the microgamete is an attractive target
for such interventions. We have accurately measured and quan-
tified several key physical characteristics from more than 800
beat cycles (42,000 video frames at 500 Hz). Here, we explain in
biological terms how our results advance understanding of the
morphology and motility of microgametes and discuss their im-
plications for the evolution of parasite mating strategies and
transmission-blocking interventions.

Sex in Plasmodium. To transmit to new vertebrate hosts, malaria
parasites must produce specialized sexual stages (gametocytes),
which are taken up in the blood meal of the mosquito vector.
Gametocytes are produced continuously [but in varying numbers
(4)] throughout infections in the vertebrate host and circulate in
the blood stream for several days while waiting to be taken up
when an insect vector (mosquito) bites the host and takes
a blood meal (3, 5). As soon as male and female gametocytes are
ingested by a mosquito, they rapidly differentiate into gametes,
and the flagellated male gametes (microgametes) must locate
and fertilize the nonmotile female gametes within a brief (∼30–
60 min) time window (6). Although female gametocytes each
produce a single gamete, unlike most male organisms, male ga-
metocytes can only produce a maximum of eight microgametes,
and it is rare that all of these are viable (2, 7). The mosquito gut is
a challenging mating environment because mosquitoes concen-
trate the blood meal and digestion begins; as soon as parasites
leave the relatively protective environment of the RBCs they were
living in, they are vulnerable to host immune factors that have also
been taken up in the blood meal (8). That fertilization occurs at
all, given the low fecundity of male gametocytes, the short window
of opportunity, and the hostile environment, is remarkable. Due
to the difficulties parasites face during mating, and because fer-
tilization appears to be a significant bottleneck in the parasite life
cycle, interventions that target the fertility of microgametes offer
the opportunity to stop disease transmission (9–11). However,
there is a lack of knowledge about fundamental and diverse as-
pects of microgamete morphology and behavior. Here, we dem-
onstrate how digital holography can reveal these important
characteristics, enabling future experiments (targeting fertility) to
be undertaken within a meaningful ecological context.

Morphology. The average length of Plasmodium berghei micro-
gametes in our study was 8.4 ± 1.4 μm (SEM, n = 24). The large
variation in microgamete length could be attributed to a number
of factors, not least the potential errors accumulated due to the
speed at which the microgametes are assembled and released
(2). Variable lengths may also be due to limited availability of

resources for producing full-length microtubules at the time of
synthesis. The microgametes are 200 nm in diameter and bend
into a quasisinusoidal shape with a wavelength around 5 μm.
Although microgametes have no defined head, our analysis re-
vealed clear “active” and “passive” ends. The passive tail end is
associated with the basal body, where the microgamete detaches
from the residual gametocyte (2). This is consistent with other
sperm studies, where the basal region is the least active part of
the flagellum owing to the increased stiffness of passive accessory
structures located there. It is also possible that the passive end
exhibits lower flexibility because this is where the microgamete’s
DNA is located. However, on balance, this seems unlikely; DNA
is drawn into the cell through the tail end during the final stages
of gametogenesis, but studies have demonstrated that the nu-
cleus is usually distributed along the center of the cell (12–14).
We note that previous studies have suggested that 60% of
P. berghei microgametes are malformed or anucleate, or contain
multiple axonemes (2); thus, we have calculated the probability
that all the microgametes in our sample were aberrant. Assuming
that one-third of the 60% are anucleate, and that it is impossible
to distinguish between nucleate and anucleate microgametes vi-
sually, the probability of randomly imaging a single anucleate
microgamete from a mixed population of swimmers is approxi-
mately 33% (anucleate swimmers constitute 20% of the total
population, and nucleate swimmers constitute 40% of the total
population). It is therefore likely that some (around one-third) of
the microgametes in our sample were anucleated. However, we do
not find two distinct populations in the data; thus, we conclude
either that the presence or absence of nuclear material has little
impact on the swimming behavior or that anucleate microgametes
are not as common as previously estimated. Finally, we note that it
is highly unlikely that all 19 of our forward-swimming micro-
gametes were anucleated; the probability is around one in a billion.
The variation in average curvature that we observe is more likely
to be due to the presence of a mechanically distinct basal body, or
a nonuniform distribution of molecular motors along the length of
the flagellum [such as that found in Chlamydomonas (15)]. How-
ever, further experiments would be necessary to resolve this.

Swimming. In contrast to the conventional direction of sperm
motility, the microgamete swims in the direction of the “active
end,” that is, the end with the higher average curvature. Waves
of curvature propagate from the active end to the passive end as
the microgamete swims. This is illustrated in Fig. S1. This mode
of swimming is analogous to the flagellum “pulling” the cell
through the medium, rather than being “pushed” by a greater
activity at the tail end. Unlike many other sperm flagella,
microgametes do not have a discernible beat plane; beating is
complex and irregular.

Speed. Microgametes displayed both fast and slow swimming
patterns as previously described (2). The more waves of curvature
travel along the microgamete in a given period, the faster it
swims. For the majority of the time, active microgametes moved
with a fast beat, which we define as “forward swimming” at an
average speed of 5.0 ± 0.4 μm/s (n = 19) and a mean frequency
of 9.6 ± 0.7 Hz. A previous study (from a smaller number of
independent infections and microgametes) estimated the same
parameters by hand from videos at 16 frames per second, finding
a speed of ∼9 μm/s and beating at ∼6 Hz (1). Although these
results are broadly consistent with our findings (and variation
may be introduced by differences in sample preparation), our
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methods have three important advantages for comparative
studies: (i) they are completely automated, making estimations
substantially less painstaking and less subjective than estimation
of parameters by hand; (ii) because our data are 3D, and ob-
tained at higher frame rates, out-of-plane motion and motion-
blurring artifacts are removed; and (iii) because our data are in
the form of coordinates that specify microgamete position as
a function of time, it is far easier to investigate new motility
metrics systematically without recourse to the raw data. Occa-
sionally, microgametes were observed to swim in the opposite
direction, which we call “reverse swimming,” at a slower speed
and lower frequency (up to threefold lower) than the forward,
fast-swimming microgametes. However, these measurements are
preliminary because they come from a smaller sample of mi-
crogametes (n = 5, whereas n = 19 for forward swimmers).

Discussion.We have characterized the microgamete of the malaria
parasite P. berghei and made the following observations. Micro-
gametes, on average, are 8.4 ± 1.4 μm long and 200 nm in di-
ameter, and they swim at 5.0 ± 0.4 μm/s, with a mean frequency
of 9.6 ± 0.7 Hz. They swim in the direction of the active end, which
bends into a quasisinusoidal shape with a wavelength around 5 μm
and an irregular beat pattern.
There are several nonmutually exclusive aspects of mating

biology that may explain the irregular beat plane of micro-
gametes. For example, they could be affected by immune factors
that are also taken up by the mosquito in a blood meal. Even
though immune factors are likely to be diluted in our culture con-
ditions, any binding to one part of a microgamete could potentially
alter beat plane and affect swimming direction (16). Alternatively,
a recent study of trypanosome motility by Heddergott et al. (17)
demonstrated that in the absence of any obstacles (similar to the
environment of diluted blood in which we imaged microgametes),
the reversal of the flagellar beat was random and resulted in slower,
irregular waveforms, which could explain the irregular beat pattern
that we observe in microgametes. Heddergott et al. (17) also re-
vealed that trypanosome flagella have a wavelength that matches
the distance between RBCs in the blood, enabling them to use the
friction generated from mechanical interactions with RBCs to swim
eightfold faster in blood (up to 40 μm/s) than in a Newtonian fluid
(cell culture medium). Interestingly, the wavelength of microga-
metes (5 μm) matches the average diameter of murine RBCs (4–7
μm) (18), which may represent a similar adaptation to enhance
motility using interactions with RBCs in the blood meal.
Swimming in the direction of the active end of the flagellum is

rare, if not unique, among sperm. However, in a blood meal
environment with tightly packed RBCs, having the active end at
the front may enable microgametes to probe the environment
more efficiently to find spaces to pass between cells. Furthermore,
it is not known how microgametes locate females, but if che-
motaxis cues are involved, traveling in the direction of the active
end may maximize the likelihood of detecting a chemotaxis gra-
dient. Similarly, the ability to swim in reverse may also be useful for
finding pathways between RBCs and/or tracking chemotaxis gra-
dients. There is no evidence for chemotaxis, but our calculations
below suggest it is unlikely that microgametes randomly encounter
female gametes.
The approximate lifetime of a microgamete is 30 min, and the

flagellar beats are randomly oriented with an amplitude (peak to
trough) of roughly 5 μm. The swimming speed may increase in
a blood meal, but the microgametes swim in viscous-dominated
environments (i.e., at a low Reynolds number). This means that
microgametes cannot swim faster than the speed at which waves
propagate along the flagellum, around 50 μm/s, regardless of
whether interactions with RBCs enhance speed. If the micro-
gamete swims at the speed we measure for 30 min (1,800 s), it
sweeps out a cylindrical volume measuring

Vgam ∼ π ·
�
2:5× 10−6

�2 · 1; 800 · �5× 10−6
�

∼ 2× 10−13m3:

The volume explored will be 10-fold larger if the maximum (50
μm/s) swimming speed is used. Assuming a blood meal size of
2 μL (2× 10−9m3), this equates to between 1/1,000 and 1/10,000
of a blood meal in 30 min. It would take more than 1 mo for the
microgamete to explore an entire blood meal at the speed we
have measured (5.0 ± 0.4 μm/s), assuming it never retraces its
steps. However, blood meals contain multiple gametocytes and
assuming a gametocyte density of 105 gametocytes per microliter
of blood and a sex ratio of 30% males, ∼400,000 microgametes
will make it into the blood meal. In this case, it is likely that
at least 1 microgamete visits everywhere in the blood meal in
30 min. These calculations are a “best case scenario” estimate
based on the gametocyte density of P. berghei infections. Game-
tocyte densities of human malaria (e.g., Plasmodium falciparum)
in natural infections are variable but generally much lower [e.g.,
500 gametocytes per microliter (including males and females)],
which translates to only ∼1,800 microgametes in the blood meal.
An additional limiting factor here is the ratio of male to female
gametocytes present in the blood meal. The gametocyte sex ratio
is variable and dependent on numerous environmental factors
(19). The resulting tradeoff is between the area of the blood
meal that the microgametes can cover (increased when the pro-
portion of males is high) vs. the density of female gametocytes
available for the microgametes to locate (decreased when the
proportion of males is high). Our estimates also do not account
for the negative effects of transmission-blocking immune factors
(20) and the high failure rate in the production of viable micro-
gametes (2). Given the increasing appreciation that transmission
to mosquitoes occurs readily from submicroscopic gametocyte
densities [<5 per microliter (21)], our results suggest that the
evolution of mechanisms to facilitate encounters between male
and female gametes would be favored by natural selection. These
could include (i) the use of interactions with RBCs to increase
swimming speed, (ii) males locating females nonrandomly by
a mechanism such as chemotaxis or nanotubes (22), and (iii)
gametocyte aggregation in the circulation of the vertebrate host
maximizing the densities of gametocytes in blood meals of vec-
tors that become infected (23). Even if microgametes swim at the
maximum speed of 50 μm/s, successful mating in the absence of
such mechanisms would seem unlikely for submicroscopic game-
tocyte densities. For example, if 5 gametocytes enter the mosqui-
to midgut, even if 4 of these are males, this would result in a
maximum of only 32 microgametes, with each exploring 1/1,000
of the blood meal in the 30-min window.
Given the drive to develop transmission-blocking interventions

and that interfering with the fertility of microgametes is an at-
tractive target, a better understanding of the behavior of mi-
crogametes is central to making interventions as “evolution-
proof” as possible. Two key questions emerge from our work: (i)
What role do RBCs have for microgamete swimming speed? (ii)
Are encounters between males and females nonrandom? An
intermediate RBC density appears to be optimal for the motility
of trypanosomes (17), and if this is also the case for microgametes,
interventions that change the density of RBCs in blood meals will
have consequences for malaria transmission. For example, vector
control measures may cause parasites to encounter other vector
species (as is occurring due to insecticide use) with different di-
uresis behaviors [up to 55% of the fluid ingested can be excreted
(24)]; thus, different packing densities of RBCs could affect mating
success. There are several ways to investigate whether RBC den-
sity has an impact on microgamete velocity, including the use of
beads or pillars in microfluidic chambers to simulate different
RBC packing arrangements. Testing whether females produce
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chemotaxis gradients that microgametes follow is more chal-
lenging but important because it could provide a novel target
for transmission blocking. Automated imaging methods like the
one we have developed can be extended to track microgamete
trajectories over longer distances, with a high throughput. Ad-
vances in microscopy and microfabrication, often originating
from physics laboratories, are ideally suited to addressing these
questions.
Finally, the contribution of biology to physics in this context

should not be underestimated. The microgamete turns out to be
an ideal model system for understanding the axoneme on a me-
chanical level. The strikingly small number of components in
amicrogamete, coupled with genetic control over its structure and
assembly (1), allows for a rigorous test of current physical the-
ories. In particular, the ability to disrupt genes responsible for
the central pair of microtubules (in other words, producing “9+
1” or “9+0” axonemes) offers the chance to resolve a long-
standing debate about the role they play in determining flagellar
waveforms, and their influence on the flagellar beat (25). For
example, an ortholog of the flagellar protein PF16 (first char-
acterized in Chlamydomonas) in P. berghei (PbPF16) has recently
been shown to be crucial for flagellar motility in malaria para-
sites. The majority of the PbPF16 mutant microgametes lacked
at least one central microtubule and were either immotile or had
slower swimming speeds (1). Such mutant lines are ideal for iden-
tifying the role of the central pair in flagellar motility, compared
with WT P. berghei microgamete motility.
Holographic reconstruction and feature extraction.Given that the work
presented here relies on the use of a novel microscopy technique,
we feel that it is appropriate to summarize the method briefly. A
more detailed account can be found in an earlier work by one of
the authors (26). We implemented inline digital holography, il-
luminating a sample with partially coherent plane waves that
were locally scattered by the sample. The unscattered portion of
the plane waves acted as a phase reference, and interfered with
the scattered light at the sample plane. This hologram was then
recorded with a standard complementary metal oxide semi-
conductor (CMOS) digital camera. Our reconstruction method
was based on the Rayleigh–Sommerfeld (RS) technique de-
scribed by Lee and Grier (27); this is particularly appropriate for
weakly scattering objects like our eukaryotic flagella. An object
of refractive index nobj in a medium of refractive index nmed is
weakly scattering if the relative refractive index m= nobj=nmed
obeys the following:

jm− 1j � 1;  kdjm− 1j � 1; [S1]

where the wavenumber is k= 2πnm=λ, λ is the illumination wave-
length, and d is a characteristic dimension of the object (28).
At heart, the RS technique is an application of Huygens’

principle, paraphrased by Born and Wolf (29) as the following:
“Each element of a wave-front may be regarded as the centre of
a secondary disturbance which gives rise to spherical wavelets;
and moreover that the position of the wave-front at any later
time is the envelope of such wavelets.” The plane reference wave
is assumed to have a constant phase across the image plane, so
we model the pixels in the image as an array of point sources
with equal phase, and with amplitudes set by the individual pixel
values. The optical field is numerically propagated to the desired
distance, where the optical field is evaluated. In our imple-
mentation, a stack of numerically refocused images was gener-
ated (typically 100 images) with axial spacing equal to the image
pixel spacing, giving a sampling frequency of 4.29 μm−1 in each
direction.
To localize the feature of interest within our reconstructed

image stack, we appeal to the Gouy phase anomaly, a phenom-
enon well known in optical tweezers instrumentation (30–32).

When a converging spherical wave passes through its geometrical
focus point, the wavefront phase is retarded by π radians com-
pared with a plane wave propagating in the same direction. This
can be observed in any bright-field microscope; weak phase ob-
jects have light centers when they lie on one side of the focal
plane, have dark centers when they lie on the other, and are
invisible when they lie directly in the focal plane. This phe-
nomenon has been observed before by groups studying cell
membrane fluctuations (e.g., ref. 33). The same phenomenon is
present in our reconstructed optical stacks; by applying a gradient
filter in the axial direction of an image stack, we can isolate
a point-like object’s position in three dimensions, as the position
where the axial intensity gradient is an extremum (its sign depends
upon which side of the focal plane the object originally lay).
The interaction of light with weakly scattering objects is de-

scribed by Rayleigh–Gans scattering theory (28). This states that
the scattered field is well approximated by the sum of contribu-
tions from an array of point-like sources. We therefore approxi-
mate our eukaryotic flagellum as a line of point-like scattering
centers and use the optical gradient method to obtain its location.
This method differs from most holographic schemes, which

often display a large depth of focus in the reconstructed field.
Other authors (34–36) have applied various focusing heuristics to
define the focal plane in these cases, which can lead to un-
certainty in the axial position up to 10-fold greater than that in the
lateral direction. Our method allows us to find the axial coordinate
of the scatterer with high precision. Previous work (26) found this
method to be accurate to within 150 nm in the axial direction for
both single particles and extended, flat aggregates of particles; this
limit is set by the reproducibility of our independent reference
(the microscope stage-positioning motor). Other measurement
and reconstruction errors tend to dominate, and we provide a
brief account of these in the next section.
Holographic data reduction and error analysis. The holographic method
described in the previous section applies strictly to weakly scattering
objects and allows the localization of point-like scatterers to within
150 nm in the axial direction. In the lateral direction, standard video
tracking arguments apply (e.g., those in ref. 37), allowing a locali-
zation accuracy in principle down to tens of nanometers.
A superposition of point-like scatterers presents different chal-

lenges in terms of accuracy, which tends to depend on the object’s
configuration. This is most clearly illustrated in the pathological
case of a rod aligned along the optical axis. Although the rod may
scatter weakly (according to Eq. S1) if viewed through one of its
short axes, this may not be the case when viewed through the long
axis. In these conditions, the reconstruction is unreliable and tends
to be exaggerated in the vertical direction. Mild examples are
shown in Movie S1, at around 22 and 29 s in, when the front end
of the microgamete points along the optical axis and effectively
disappears. This dominant failure mode is distinctive and leads
to a vertically “flared” structure in the reconstructed data and a
drastically shortened contour. Data subject to this failure mode
are limited to ≤5% of the total frames.
The greatest position uncertainty arises when fitting a seg-

mented contour of section length Δs to the raw data, as described
in the main text. The choice of Δs is not arbitrary, but is set by
the optical magnification and the true size of the object. In our
system, 0.7 μm corresponds to three pixels, which is just larger
than the apparent width of the microgamete in the reconstructed
image (which occupies two pixels at most, and with an average
position that can be measured with subpixel accuracy). If Δs is
much smaller, the reconstruction is susceptible to camera pixel
noise, leading to a more jagged fitted contour. If Δs is much
larger, we risk “averaging out” some of the curves in the feature
of interest. Clearly, the microgamete is not, in general, a multiple
of 0.7 μm in length. This is why the right-hand edges of Figs. 2A
and 3C are somewhat “ragged”; the number of segments ex-
tracted fluctuates a little from frame to frame (very rarely greater

Wilson et al. www.pnas.org/cgi/content/short/1309934110 3 of 7

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309934110/-/DCSupplemental/sm01.avi
www.pnas.org/cgi/content/short/1309934110


than ±2), with segments lost at the “head” end. There is also
a small measurement error due to how we define the first point
in the contour and how subsequent frames are aligned. The
“tail” of the microgamete is reliably found by the reconstruction

routine, so we can find one end with an accuracy on the order of
plus or minus one pixel (note: the tail point can be in an average
position between other pixels). This is then the uncertainty in
registration between subsequent frames in Movie S1.
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Fig. S1. Swimming directions of a mammalian sperm (Upper) and microgamete (Lower).

Movie S1. Reconstruction of a swimming microgamete, played back at 1/10 of true speed. The RBCs are to scale, and squares on the floor are 2 μm on a side.
The swimming object on the left is the gamete volume of interest (VOI); the object on the right is the fitted contour.

Movie S1
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Movie S2. 3D anaglyph movie of a swimming microgamete played back at 1/10 of true speed. The RBCs are to scale, and squares on the floor are 2 μm on
a side. The swimming object on the left is the gamete VOI; the object on the right is the fitted contour.

Movie S2

Movie S3. Demonstration of the irregular microgamete waveform. The gamete coordinates used to generate Movies S1 and S2 have been rotated to lie along
the observer’s line of sight, as described in the main text, to illustrate the variability in the flagellar waveforms. The data are played back at 1/10 of the
acquisition speed.

Movie S3
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Movie S4. Example of raw holographic data. The movie measures 30 μm on a side and is played back at 1/10 of the acquisition speed.

Movie S4

Movie S5. Example of a numerically refocused image stack. The movie scans through the reconstructed volume (along the optical axis) at a speed of 3.5 μm/s,
and the movie measures 30 μm on a side.

Movie S5
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A B S T R A C T

For vector-borne parasites such as malaria, how within- and between-host processes interact to shape

transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmis-

sion to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that

gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production

in response to in-host factors remain controversial. We propose that evolutionary theory developed to

explain variation in reproductive effort in multicellular organisms, provides a framework to understand

gametocyte investment strategies. We examine why parasites adjust investment in gametocytes accord-

ing to the impact of changing conditions on their in-host survival. We then outline experiments required

to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a

variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so

understanding plasticity in investment is central to maximizing the success of control measures in the

face of parasite evolution.

K E Y W O R D S : Plasmodium; transmission; commitment; stress; phenotypic plasticity; gametocyte

INTRODUCTION

Plasmodium spp (malaria parasites) and other

Apicomplexans are some of the most serious patho-

gens of humans, livestock and wildlife [1]. Cycles of

asexual replication inside host red blood cells

(RBCs), lasting from 24 to 72 hours [2], enable

parasites to establish and maintain infections. To

transmit to new hosts, every cell cycle a proportion

of parasites develop into specialized sexual stages

called gametocytes, which do not replicate in the

host, but are infectious to the mosquito vector
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(unlike asexual stages). When taken up by the vector,

male and female gametocytes differentiate into

gametes and mate. The resulting offspring infect

the vector and eventually produce stages infective

to new hosts [3].

It is well known that the production of gameto-

cytes varies during infections and across hosts

[4–7]. However, the factors that induce commitment

to produce gametocytes, and why parasites respond

to these factors, are long-standing questions [8–11].

This information is central to understanding severity

and transmission of disease, for predicting how dis-

ease control strategies will affect infectiousness [12–

15], and may also reveal novel ways to target

parasites.

Here, we propose that malaria parasites strategic-

ally adjust investment into gametocytes (hereafter,

the conversion rate) in response to the changeable

conditions experienced during infections and that

plasticity in the conversion rate enables parasites

to optimize their survival and transmission during

infections. Our conceptual model stems from the

integration of diverse experimental data into an eco-

logical and evolutionary framework, thereby making

the predictions of our model and its underlying

assumptions explicit and testable. While we focus

on malaria parasites, the concepts and approach

we outline can be applied more broadly to species

for which in-host replication and between-host

transmission are achieved by different specialized

stages.

CONVERSION RATE: EVOLUTIONARY
CONTEXT

Parasites experience rapid and extensive variation in

their in-host environment (e.g. in resource availabil-

ity, competition with other genotypes and species,

immune responses, and drug treatment) through-

out their infections and while occupying different

hosts and vectors. There is mounting evidence that

traits underpinning in-host replication and between-

host transmission (spanning from immune evasion

traits [16, 17] to investment in transmissible forms

[4, 18, 19]) are adjusted by parasites during infec-

tions. This flexibility in traits is called ‘phenotypic

plasticity’ defined as the ability of a genotype to

produce different phenotypes in response to envir-

onmental change [20, 21]. Phenotypic plasticity is

an important solution to the challenges of life in a

changing environment because it enables organ-

isms to maintain fitness by altering their phenotype,

through mechanisms such as differential gene

expression, to match their circumstances [22].

Every cell cycle malaria parasites face a resource

allocation trade-off between how much to invest in

asexual stages that are required for in-host survival

and in sexual stages that are essential for between-

host transmission [23, 24]. This is analogous to the

trade-off between survival and reproduction faced by

all sexually reproducing organisms [25, 26]. Because

reproduction is costly, phenotypic plasticity in the

conversion rate influences two key fitness compo-

nents: in-host survival and between-host transmis-

sion [24]. High conversion early in infections

increases the potential for transmission, but this

strategy risks insufficient investment in asexual

stages to maintain the infection within the host,

resulting in a short duration for transmission.

Conversely, excessive investment in asexual parasite

replication reduces the rate of transmission at

any given time, but this may be compensated for

by longer infection durations and continued opp-

ortunities for transmission [24, 27].

The number of gametocytes produced during

infections is generally low [9] and it has been sug-

gested that high densities of asexual stages are

needed to shield gametocytes from transmission

blocking immune responses [28]. However, this

hypothesis does not explain why conversion rates

vary during infections, between conspecific

genotypes, and across species [7, 37, 39] (Fig. 1).

The conversion rate is defined as the proportion of

asexual stage parasites that commit to producing

gametocytes in subsequent cell cycles (Box 1), and

is called ‘reproductive effort’ in evolutionary biology.

Therefore the conversion rate is not synonymous

with the density or prevalence of gametocytes; vari-

ation in gametocyte densities can be generated by

the same level of investment from different numbers

of asexual stages [6].

In multicellular organisms, reproductive effort de-

cisions are based on multiple extrinsic and intrinsic

cues, mortality risk and how these factors vary

through an individual’s lifetime [25, 26, 29–31].

Evolutionary theory predicts organisms should in-

vest less in reproduction as they age because deteri-

oration in their physiological condition (referred to

as ‘state’) means that more resources need to be

allocated to maintenance to ensure continued sur-

vival [29–31]. However, when facing an irrecoverable

decline in state, or other fatal circumstances, organ-

isms should make a terminal investment to

maximize short-term reproduction [29, 32, 33].
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When translating this to malaria parasites each

genotype within a mixed infection is the target of

selection and should behave as a multicellular or-

ganism [34]. The density and/or proliferation rate

of parasites is analogous to the ‘state’ of multicellu-

lar organisms. During infections, numerous factors,

such as competition with unrelated genotypes, other

species, drug treatment, immune responses, RBC

resource availability and host nutritional status can

all change dramatically and impact upon parasite

proliferation in the host. Thus, in-host environmen-

tal factors that negatively affect proliferation can be

considered as ‘stressors’ which impact on the ‘state’

of parasites.

STRESS-INDUCED SEX?

Human (Plasmodium falciparum) and rodent

(Plasmodium chabaudi) malaria parasites elevate

gametocyte densities in response to high doses of

antimalarial drugs [4–6, 35] and an increase in young

RBCs (reticulocytes) [36, 37]. However, care must be

taken when making comparisons as there are

discrepancies between the approaches used to esti-

mate conversion rates in different studies (Box 1).

Increasing conversion has been interpreted as a

strategy parasites adopt when they experience ad-

verse conditions, enabling them to maximize trans-

mission before the infection is cleared or the host

dies [4, 8], a so-called ‘terminal investment’ [29].

While this makes intuitive sense in the case of drug

treatment, it is not clear whether reticulocytes are, or

indicate, adverse conditions.

In contrast, recent experiments (using P. chabaudi

rodent malaria parasites in vivo [7, 38], and human

P. falciparum parasites in vitro [39]) reveal that when

exposed to competition with other genotypes in

the host, RBC resource limitation, or low doses of

anti-malarial drugs, parasites reduce conversion

rates, adopting ‘reproductive restraint’ (Fig. 1).

Evolutionary theory predicts that reproductive

restraint during periods of mild stress improves

Figure 1. Plasmodium conversion rates are variable. The conversion rate (±SEM) represents the proportion of a given cohort of asexual parasites that differentiate

into sexual stage gametocytes. Variation in conversion is observed across species and during infections/culture (A). Note: conversion is calculated differently for

rodent malaria parasites (P. chabaudi, P. yoelli, P. vinckei and P. berghei, in vivo) and for P. falciparum (in vitro) (see Box 1). Different conspecific genotypes of

P. chabaudi, in the same experiment, exhibit different patterns for conversion during infections (B). Plasmodium chabaudi reduces conversion when experimentally

exposed to in-host competition (C). The conversion rates of genotype AJ are illustrated; during a single genotype infection (alone), and the mean conversion when

in competition with either genotypes ER, AS, or both together (in competition). The reduction in conversion observed when drug sensitive P. falciparum isolates are

exposed in vitro to antimalarial drugs or control conditions (D) [7, 37, 39]
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box 1 : calculat ing conversion rates

Current protocols for in vitro studies of P. falciparum calculate the conversion rate on day t as the number of stage II

gametocytes observed in 10 000 RBCs on day tþ 3 (the earliest time point when P. falciparum gametocytes are distin-

guishable from asexual blood stages) divided by the number of ring-stage asexual parasites observed in 10 000 RBCs on

day t [83].

For P. chabaudi, conversion is calculated from in vivo measurements according to [6]. The description of the biological

process underlying the model in [6] overcomes challenges posed by hard-to-quantify parameters (i.e. parasite death rates

in the bloodstream and schizont burst sizes) and takes into account the maturation times of gametocytes and asexual

blood stages (48 and 24 hours respectively, for rodent parasites). Although the mathematical formulation assumes

gametocytes are counted 24 hours into development, current molecular assays count gametocytes of an unknown age

(but are likely to be between 24 and 48 hours old). Ideally we need to know the schedule of development and the precise

point at which gametocytes are assayed, since these will determine the exact form of the conversion rate equation. For

example, if markers in mature (48 h old) gametocytes are used, then conversion rate, e, should be quantified as:

e ¼
Gtþ3

Atffiffiffiffiffiffiffi
Atþ3

At

3

q
þ

Gtþ3

At

where Ai and Gi are asexual and gametocyte densities on day i.

While these tools are easy to implement, the assumptions underpinning them are key to making accurate estimates of

conversion rates. These assumptions, and their caveats, include:

(1) The probability of asexual parasites producing gametocytes is constant over the period between gametocyte produc-

tion and detection. Given the expectation of plasticity in conversion, whereby a different proportion of asexual para-

sites can commit for every cell cycle, this assumption may often be hard to fulfil.

(2) Both in vivo and in vitro approaches assume that the death rate of asexual parasites and gametocytes is equal. Whilst

in vitro culture conditions do not have the problem of sequestration (disappearance from the circulation) or immune

factors that could exacerbate differential mortality rates between lifecycle stages [9], for in vivo assays these factors

could confound conversion estimates [40]. Furthermore, conversion rates can be overestimated if the death rate for

asexual parasites is higher than for gametocytes (which could well be the case during drug treatment [39], or

underestimated if early stage gametocytes are mistakenly identified as asexual stages. It is possible to develop

mathematical models and formulate predictions for how different survival rates need to be if they are the sole driver

of observed patterns in conversion rates. For example for the in vivo P. chabaudi data in [7], we find that the difference

in survival rates between asexual parasites and gametocytes must vary over the course of infections (e.g. immunity

sometimes focuses efficiently on killing gametocytes while at other times survival rates across parasite stages are

equal) and must vary considerably in different kinds of infection (N. Mideo, unpublished results). In particular, to

explain the difference in patterns of conversion observed in Fig. 1C, survival rates of gametocytes (relative to asexual

parasites) in mixed infections must be several orders of magnitude lower than in single infections. As yet, there is no

known mechanism that could underlie such drastically different patterns of survival between parasite stages, during

and across infections. Therefore, we propose that differential survival is unlikely to be the sole cause of variation in

patterns of conversion rates. However, developing a better understanding of immune responses and subsequent

parasite death rates remains an important goal.

In the literature, there are considerable discrepancies in how conversion rates for P. falciparum have been examined,

with some studies measuring the gametocyte density in circulation and others presenting gametocyte prevalence

(reviewed in [12]). This is, in part, due to the difficulties in calculating conversion rates for natural P. falciparum infections

since repeated samples—at specific time points—are required to assay the number of asexual parasites in a cohort and

the number of gametocytes they produce.

Basing inference simply on gametocyte density can be problematic: for example, observations of elevated gametocyte

densities post drug treatment could be due to the release of sequestered gametocytes and/or an increase in conversion

rate [9]. Data on the timing of gametocytes appearing in the circulation can resolve this issue, but again, requires

(continued)
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the prospects for in-host survival, and therefore

the opportunities for future transmission [40].

The experimental data also suggest that parasites

respond to the presence of the extrinsic (environ-

mental factors) as well as to their intrinsic effect

(impact on state). Moreover, data from monitoring

a cohort of infected patients collected in the same

area from which the parasites used in Reece et al. [39]

were isolated provide tentative (in vivo) support for

the reproductive restraint of P. falciparum in

response to drug pressure [41].

The contrasting observations of increased and

decreased conversion rates in response to environ-

mental variation within the host can be reconciled

by considering the severity of stress imposed on

parasites by in-host factors. This is illustrated in

Fig. 2A in which we propose that parasites adjust

their conversion rate according to the impact of con-

ditions on their proliferation (state) or via directly

detecting the presence of stressors (Fig. 2B). In low

stress conditions (e.g. infections of naı̈ve hosts)

parasites can afford to invest in gametocytes, and

do so at a rate that maximizes transmission. When

in-host conditions deteriorate due to the appear-

ance of stressors (e.g. competition with other geno-

types and species, immune responses, drug

treatment), parasites are constrained to invest in

survival, which they achieve by reducing the conver-

sion rate (reproductive restraint) [23, 42]. By

ensuring survival during periods of stress, parasites

benefit from the fitness returns of future transmis-

sion (i.e. by reducing the rate of transmission in the

short term, parasites gain a longer duration for

transmission). When faced with attack from im-

mune responses, investing more in replication

may also have the added benefit of increasing

opportunities for immune evasion via antigenic

switching [43]. However, in very poor conditions,

when parasites experience severe stress and their

death rate exceeds the capacity for proliferation or

host mortality is imminent, they should make a

terminal investment to maximize short-term trans-

mission by diverting resources to gametocyte

production.

The pattern of conversion we predict in Fig. 2A is

qualitatively similar to that predicted through a

mathematical analysis by Koella and Antia [23].

Their analysis relied on strict assumptions: infec-

tions are lethal to the host above a threshold density

and conversion rates are adjusted to limit asexual

parasite densities to just below this threshold. This

work raises the point that all else being equal,

increasing investment in gametocytes should lead

to decreasing virulence of an infection; a large body

of theory predicts how virulence should depend on

in-host factors (e.g. [15], reviewed in [44]). However,

virulence is only one of the many selective forces

acting on conversion rates. As only a small propor-

tion of modern human malaria infections are fatal,

we predict parasites more often need to respond to

in-host factors that are able to clear infections than

to imminent host death. The high prevalence of

chronic malaria infections and the increasing appre-

ciation of their contribution to the infectious reser-

voir [45–47], also suggests that a long duration of

transmission matters and producing gametocytes

‘few but often’ results in the greatest lifetime fitness.

Transmission success is also heavily dependent on

vector availability. In areas where transmission is

seasonal, parasites must survive in the host during

the dry season. Indeed, parasites have evolved

diverse strategies to facilitate long-term in-host

box 1 : continued

repeated sampling at specific time points. While there are important ethical and logistical considerations when studying

natural infections of humans, monitoring infections, with measurements of conversion and in-host variables (e.g. an-

aemia and genetic diversity) would be extremely useful.

To address the problems outlined in points 1 and 2, ideally, conversion rates for rodent malaria parasites in vivo could

be calculated in the same way as is now possible for in vitro cultures of P. falciparum (using GFP-tagged molecular

markers of sexually committed schizonts and flow cytometry to sort fluorescent parasites [84]). However, despite the

issues raised, measuring conversion rate remains a more desirable approach than simply analysing gametocyte density or

prevalence, because changes in the density of gametocytes can be generated from cohorts that simply differ in asexual

parasite number, but invest in the same relative number of gametocytes.
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survival, from immune evasion mechanisms

(e.g. antigenic switching in P. falciparum [16]); to

resisting competition (e.g. rodent malaria parasites

prevent incoming, competing parasites from estab-

lishing an infection via the host iron regulatory

hormone hepcidin [48]). In the majority of parasite

species, the success of these strategies depends on

maintaining asexual replication at a sufficiently high

rate, which can be achieved through reproductive

restraint.

TESTING THE THEORY:
COMPLICATIONS AND CHALLENGES

The model outlined above provides a foundation to

explain variable conversion rates when considered in

light of several key questions:

(i) Which cues do parasites use to make con-
version rate decisions?

(ii) What are the mechanisms that enable
plasticity in conversion rate?

(iii) How finely tuned are conversion rates to
the in-host environment and state?

(iv) Does adjusting conversion rates in the
manner predicted maximize parasite
fitness?

We consider answers to these questions in the

following sections and outline the challenges

required to evaluate these hypotheses in Box 2.

Cues for conversion decisions

The extent to which parasites respond directly to

extrinsic stressors or simply the overall effect those

stressors have on state is not known. Experimental

data suggest parasites can respond both to state

and environmental factors. For example, experi-

ments exposing P. falciparum to low doses of

Figure 2. Predicted pattern for conversion. (A) Under low

‘stress’ (e.g. early in infections of naı̈ve hosts) parasites can

afford to invest in gametocytes, but if conditions deteriorate

and proliferation is constrained (e.g. when parasites face

stressors such as anaemia, competition or immune re-

sponses) parasites reduce conversion, employing reproduct-

ive restraint (blue dashed lines), to ensure in-host survival and

the potential for future transmission. The form that reproduct-

ive restraint takes could follow any of the patterns illustrated

with the dashed blue lines, depending on a number of factors

(e.g. the cues parasites respond to, how accurately survival

probability is determined, and the value of future versus cur-

rent transmission). When parasites face circumstances likely

to be fatal (e.g. when their death rate exceeds the potential for

replication during radical drug treatment) or host death is

imminent (e.g. due to severe anaemia), parasites should make

a terminal investment by investing remaining resources into

gametocytes (red solid line). A switch point and step function

between reproductive restraint and terminal investment is pre-

dicted because investing all remaining resources is the best

option in a situation likely to be fatal. Note: the x-axis does not

simply translate to ‘time since infection’ because the severity

of different stressors fluctuates during infections. (B) Data

suggest that parasites can detect and respond directly to in-

dividual stressors and also to the effect they have on

Figure 2. Continued

proliferation rate. Information from the cues parasites use

must be fed into the molecular pathways that underpin com-

mitment to effect a gametocyte investment decision. (C) The

total production of gametocytes (the area under the curve) is

equal for both genotypes [14]. However, genotype A invests

heavily into transmission early in the infection and therefore

achieves higher gametocyte densities over a shorter period of

time, whereas B has a lower relative investment in gameto-

cytes at each time point, but achieves a longer period for trans-

mission. The optimal balance between these two extremes is

predicted to depend on many factors including the frequency

of vector blood meals, and the chances of the host clearing the

infection or dying
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box 2 : challenges and future direct ions

While our conceptual model is general, testing it requires examining specific circumstances. Here, we outline the main chal-

lenges and outstanding questions involved.

Response to drugs: Data for conversion rates—especially from experiments using drugs—are consistent with the basic

prediction of parasites adopting reproductive restraint (P. falciparum in vitro [39]), or terminal investment (P. chabaudi in vivo

[4, 6] and P. falciparum in vitro [5]), in response to different levels of stress. However, further work is required to explicitly test

the effects of varying dose within the same experiment—both for rodent models and in vitro for P. falciparum. Furthermore, not

all drugs appear to induce changes in conversion rate [6, 35]. This may be because drugs with different modes of action

differentially affect the capacity of survivors to detect/respond to changes in state, or the capacity of dying parasites to provide

signals.

Response to competition: In-host competition is a stressor with a negative effect on state because the densities of all

genotypes (individually and when combined) is reduced in mixed infections compared with single infections. This is due to

a mixture of competition for RBC and the action of immune repsonses that are not genotype specific. Competition within the

host could occur via a single bite from a mosquito infected with multiple genotypes (to a naive host). Alternatively, competition

can be established when a mosquito infected with one genotype bites an individual already infected with a different genotype.

The latter example of sequential infection would be less stressfull for the resident genotype than the newcomer, even if it the

resident genotype is competitively inferior to the incoming genotype [85]. This is because the incoming genotype will enter a

RBC resource depleted environment with cross-reactive immune responses already in place [86]. In vivo studies of simultaneous

in-host competition using P. chabaudi reveal reproductive restraint across several genotypes [7, 87], but there are no reports of

increased conversion in response to competition. Adopting reproductive restraint in response to competition might be the only

strategy required because in-host competition is never stressful enough to merit terminal investment. Alternatively, this may be

an artefact of experimental design in which mixed infections do not result in competitive exclusion, even for the weakest

genotypes [7, 88, 89]. Experiments using genotypes that vary in competitive ability, inoculated at different starting doses and

times during infections are needed to test whether in-host competition can induce terminal investment. At the host population

level, the consequences of different investment strategies would be much harder to test experimentally, but theory demonstrates

that there will be feedback from the within- to between-host levels, and vice versa (e.g. [90]). For instance, if mixed infections

really do promote reproductive restraint, then this should result in less transmission and, consequently, fewer mixed infections.

Some of the variations observed in conversion rates may be a consequence of this sort of dynamic feedback.

Response to reticulocytes: Conversion has been observed to both increase and decrease in response to reticulocytes. For

some species (e.g. P. berghei and P. vivax) that preferentially invade reticulocytes, an increase in conversion upon exposure to

reticulocytes is consistent with parasites making use of available resources. However, species able to infect a wide range of RBC

ages, such as P. falciparum and P. chabaudi, also increase conversion in response to reticulocytes [36, 37]. This may be because

reticulocytes are also exploitable resources. However, the lifespan of gametocytes in P. falciparum is at least five times that of

asexual stages, so the longer expected lifespan of reticulocytes may provide a better resource to support the development of

gametocytes than mature RBCs. Alternatively, for all species, increased reticulocytaemia could indicate severe anaemia leading

to imminent host death, and thus, terminal investment is the best strategy. For example, the poultry malaria parasite

P. gallinaceum appears to be able to determine whether the host will survive or die from severe anaemia because it produces

different sex ratios in these different circumstances [55]. However, an influx of reticulocytes could also indicate the opposite—

that the host is generating an appropriate erythropoietic response and will recover from severe anaemia. In this case, repro-

ductive restraint maximizes the potential for the parasites to survive.

When in-host survival does not rely on asexual parasite replication: Parasite species producing dormant stages that persist in

the liver (hypnozoites) and dendritic cells, such as the human malaria parasites P. vivax and P. ovale [91, 92], may not adopt

reproductive restraint in response to stress because survival in the host does not depend on blood stage replication. Terminal

investment due to imminent clearance will also be unnecessary but may be required to cope with host death. To our knowledge

there are no data on the conversion rates of P. vivax experiencing different in-host conditions. However, during natural P. vivax

infections, higher gametocyte densities are correlated with a mixture of seemingly favourable and unfavourable conditions,

including younger (immunologically naive) patients, those with higher parasite densities, lower haemoglobin levels, lower

platelet counts and an absence of fever (reviewed in [12]). Plasmodium vivax gametocyte densities are also generally much

higher compared with those recorded for P. falciparum, but each gametocyte circulates for a shorter time; a maximum of 3 days

(reviewed in [12]). These observations suggest that P. vivax may have a non-plastic strategy of a relatively high conversion during

the short-lived erythrocytic stage of their infections.
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different anti-malarial drugs in culture have included

both drug sensitive and resistant genotypes but only

sensitive genotypes respond. This suggests that

parasites do not directly detect each drug, but

instead, respond to the negative effect they have

on state [39]. Responding to state seems the more

efficient strategy: it avoids the need to integrate in-

formation about multiple factors, potentially giving

opposing information, to mount an appropriate

response. For example, the level of anaemia induced

by P. falciparum infections varies depending on the

type of antimalarial drug administered to patients

and whether the parasites are cleared [49]. Because

anaemia triggers the formation of reticulocytes, the

reproductive strategy employed in response to

the presence of drugs may be complicated by the

simultaneous change in RBC age structure.

Parasites could be responding directly to the drugs,

the resulting changes in RBCs, both, or the overall

effect that both factors have on the ‘state’ of the

infection [36, 37].

Whether the best measure of state is parasite

density per se or proliferation (i.e. rate of change in

density) is unclear. Data from several P. chabaudi

genotypes [7, 50] and subsequent modelling [51]

suggests that parasites alter their conversion rate

according to their density in mixed genotype infec-

tions. Density could be determined by quorum

sensing [52], markers of RBC lysis from burst

parasitized cells [53], immune factors, or metabolic

measures such as energy balance or reducing power

(e.g. the expression of genes associated with starva-

tion are associated with increased conversion in

P. falciparum [54]). However, detecting the density

of a parasite cohort does not necessarily reveal a

change in state (i.e. is parasite density increasing

or decreasing?).

Measuring proliferation requires that parasites in-

tegrate information on density over consecutive cell

cycle cohorts. This information may be more accur-

ate for parasite species with synchronous progres-

sion through cell cycles than for species with

asynchronous cycles. In this case, if proliferation

rate information is unreliable, parasites could

respond to individual environmental stress factors;

either directly or indirectly, by detecting a co-varying

factor. For example, parasites may use the onset of

anaemia as a signal for the imminent arrival of

antibodies and the development of immune

responses [37, 55, 56]. Using proxies in this way

may also enable parasites to predict future changes

in state and respond preemptively [57]. Alternatively,

parasites could measure their death rate; although

mechanisms for this are more difficult to envision,

they could include monitoring the concentration of

immune effectors or the release of SOS signals

by dying parasites similar to bacteria and

Chlamydomonas [58, 59].

Mechanisms underpinning conversion

The mechanisms regulating the switch to gameto-

cyte production remain elusive. Advances in gen-

omics, transcriptomics, proteomics and functional

gene targeting studies have identified several

markers of early gametocyte development in human

and rodent malaria parasites (reviewed in [8, 10, 60–

63]). These studies provide further evidence that

commitment occurs at or prior to the schizont stage

preceding the release of sexually committed

merozoites (as has been previously suggested for

P. falciparum [64, 65]). Studies using GFP reporters

with known gametocyte specific promoters also sup-

port this developmental pattern (reviewed in [10, 13,

60, 61]). Recently, the gene P. falciparum gametocyte

development 1: Pfgdv1 (PFI1710w) has been

identified as a regulator of gametocyte production

(and is associated with an increased expression of

genes involved in early gametocytogenesis (Pfge

genes) [66]), and work from our group has identified

an ApiAP2 DNA binding protein [67] that is required

for gametocyte commitment (Kafsack and Llinás,

unpublished data).

While identifying molecular markers for commit-

ment is useful for quantifying conversion decisions,

the evolution of plasticity in conversion rates is

shaped by the nature of the pathways involved

in: detecting cues, processing the information,

producing a conversion rate phenotype and the mat-

uration of gametocytes. The critical regulators

underlying gametocyte conversion may act within a

complex network of interactions between different

modules involved in information assimilation and

integration to produce a conversion rate phenotype.

This level of complexity is very challenging to unravel

and made more difficult because gene function and

changes in expression must be assessed in the con-

text of variation in both the environment and genetic

background of the parasites. Furthermore, it is pos-

sible that the environmental sensing mechanisms

underlying conversion decisions may also feed infor-

mation into other plastic life history decisions such

as sex ratio, cell cycle arrest and var gene switching

(which is responsible for antigenic variation to evade
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host immune responses), as these traits are sensi-

tive to similar environmental perturbations

(reviewed in [24]). As these traits are likely to be

linked by genetic correlations (e.g. epistasis/plei-

otropy: different traits are shaped by the same

genes), understanding the nature of these inter-

actions is central to explaining plasticity in these

traits.

Parameterizing patterns of conversion

The shape and switch point(s) of the reaction norm

(how a trait varies across an environmental gradi-

ent) reveal how fine-tuned parasite responses are to

environmental variation, including novel stressors.

The extent of genetic variation for reaction norms is

a determinant of the potential for evolution.

Reaction norms are influenced by many interacting

factors. This includes the reliability of cues, costs of

maintaining detection and response mechanisms,

and how much multiple sources of information af-

fect the risk of making the wrong decision [68–70].

Differences in reaction norms across species, that

have different cell-cycle durations, gametocyte

development times or RBC age preferences, may

reflect how differences in costs and constraints on

plasticity shape parasite strategies. As many differ-

ent factors can independently and simultaneously

affect in-host conditions and parasite state,

examining the patterns of conversion rates resulting

from varying factors individually is useful, but

providing cues in different combinations is required

to reveal the full picture.

The reaction norm for conversion is predicted to

follow a non-linear pattern, with any of the patterns

illustrated and at least 1 switch point (reproductive

restraint to terminal investment; Fig. 2A) [23, 42].

This switch should occur when the death rate ex-

ceeds the proliferation rate. We expect this point will

be influenced by species-specific variation in cell-

cycle duration and gametocyte development time,

and by how quickly the environment and/or state

changes. For example, the cell-cycle duration and

gametocyte development time of rodent malarias

are much shorter than that of P. falciparum. While

the cell cycle for rodent malaria parasites is 24 hours,

and gametocytes reach maturity and are infectious

to mosquitoes after 24–48 hours, the cell cycle of the

human malaria parasite P. falciparum is 48 hours

and gametocytes require 10–14 days to reach matur-

ity [10, 11]. Therefore, if P. falciparum makes a ter-

minal investment in advance of host death the host

is required to survive at least 10–14 days until the

investment can pay off (five further asexual cycles),

but only 48 hours are required for rodent parasites

to produce transmissible gametocytes. As such,

P. falciparum may ‘play it safe’ and adopt a more

conservative strategy by making a terminal invest-

ment in response to lower levels of stress than

rodent parasites, whose gametocytes reach maturity

within 48 hours (two asexual cycles). If a fast drop in

numbers were normally a reliable indicator of a ter-

minal situation, this would explain why increased

conversion is observed when parasites are exposed

to high, but subcurative, drug doses [39, 41]. Also, if

the longer cell-cycle duration of P. falciparum

compared to rodent malarias makes P. falciparum

more vulnerable to being cleared by the host, repro-

ductive restraint will be induced at lower stress than

for rodent parasites.

As shown in Fig. 2C, the characteristics of popu-

lations can also influence the shape of reaction

norms. For example, a ‘live fast, die young’ strategy

in which parasites readily switch to terminal invest-

ment may bring greater pay offs in an epidemic

setting—where there are plenty of naı̈ve hosts to

be transmitted to—than in an endemic setting

where parasites will be transmitted to hosts contain-

ing competitors and with active immune responses

[71]. This is because genotypes with a high conver-

sion rate risk being unable to establish infections in

new hosts, due to being outcompeted by resident

genotypes [15, 40]. Furthermore, Parasites in

hypoendemic areas experience lower levels of in-

host competition than those from regions with high

genetic diversity (hyperendemic) and so may be less

responsive to novel stressors such as competition

and its effect on state.

Linking variable conversion rates to fitness

A key prediction to test is whether plasticity in

conversion rate is adaptive [72]. The extent to which

reproductive restraint provides an in-host survival

advantage under stress is yet to be determined

(e.g. how much does reproductive restraint amelior-

ate the suppression of a genotype in a mixed infec-

tion?). At the between-host level, how different

reproductive strategies map to the rate and duration

of transmission is hard to assess from data (e.g.

gametocyte prevalence) available on natural infec-

tions. Therefore, whether (under some conditions)

prolonging the duration for transmission enhances

fitness, and whether terminal investment benefits
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parasites in lethal situations through an increase in

short-term transmission, remain unknown.

Testing the fitness consequences of variation in

traits is notoriously difficult, but identifying the host

and parasite factors that elicit a change in conver-

sion rate and the reaction norms generated by dif-

ferent levels of stress will provide the required

foundations. For example, by providing a cue that

elicits reproductive restraint in different circum-

stances (e.g. cues for competition provided in single

infections) parasites can be induced (‘tricked’) into

making inappropriate responses for their circum-

stances. The consequences for in-host survival and

transmission for parasites responding to fake cues

could then be quantified, and compared to the

performance of parasites exposed to cues that

accurately reflect their circumstances [73]. This

framework also opens up the possibility of develop-

ing interventions that co-opt plasticity in conversion

rates, by manipulating parasites into making sub-

optimal decisions for their fitness.

The maintenance of mechanisms required to de-

tect and respond to environmental change requires

resources that could be otherwise allocated to differ-

ent functions [74]. Evolutionary theory predicts that

if these costs are sufficiently high then plasticity is

selected against and lost if organisms no longer

experience variable environments, but evidence for

costs of plasticity is scarce [75]. Because gameto-

cytes are costly, selection for in-host replication dur-

ing long-term culture of P. falciparum and serial

passage of P. berghei result in the loss of gametocyte

production [8, 76]. However, whether plasticity is

actually lost is unclear because gametocyte produc-

tion is sometimes recoverable [77].

CONCLUSIONS

That in-host ecology shapes the dynamics of infec-

tions [78, 79] and patterns of transmission is well

known [12, 80–82]. Despite this, why the density of

circulating gametocytes in malaria is generally low

[9, 40] has eluded explanation. We provide an evolu-

tionary theory-based model, which predicts that

parasites can rarely afford to invest in more because

their life history spreads reproduction across mul-

tiple attempts over a relatively long time period.

Given renewed interest in transmission blocking

interventions, understanding parasite strategies for

gametocyte investment is central to making such

measures as resilient to parasite counter evolution

as possible [12, 15]. For example, inducing all

parasites to commit to gametocytes (ideally of the

same sex) would reduce the virulence of the infec-

tion and could also produce an effective transmis-

sion-blocking immune response that acts against

future infections. For example, this could be useful

for travellers returning to non-malarious countries.

Inducing commitment in vitro could also generate

material to inform the development of other trans-

mission-blocking interventions such as vaccines

and drugs with gametocytocidal action.

Finally, it is often not appreciated that plasticity in

parasite life history traits can also shape evolution-

ary responses to environmental change. For

example, if plasticity in conversion rate acts as a

buffering mechanism to minimize the impact of

drug treatment, this may weaken selection for other

forms of resistance. This may be favourable from the

perspective of maximizing the timespan of efficacy

of antimalarial drugs. However, such infections will

likely be harder to treat than if malaria parasites

exhibited a higher, fixed, conversion rate.
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